摘要:
A method for depositing silicon oxide layers having a low dielectric constant by reaction of an organosilicon compound and a hydroxyl forming compound at a substrate temperature less than about 400° C. The low dielectric constant films contain residual carbon and are useful for gap fill layers, pre-metal dielectric layers, inter-metal dielectric layers, and shallow trench isolation dielectric layers in sub-micron devices. The hydroxyl compound can be prepared prior to deposition from water or an organic compound. The silicon oxide layers are preferably deposited at a substrate temperature less than about 40° C. onto a liner layer produced from the organosilicon compound to provide gap fill layers having a dielectric constant less than about 3.0.
摘要:
A method for processing a substrate including depositing a dielectric layer containing silicon, oxygen, and carbon on the substrate by chemical vapor deposition, wherein the dielectric layer has a carbon content of at least 1% by atomic weight and a dielectric constant of less than about 3, and depositing a silicon and carbon containing layer on the dielectric layer. The dielectric constant of a dielectric layer deposited by reaction of an organosilicon compound having three or more methyl groups is significantly reduced by further depositing an amorphous hydrogenated silicon carbide layer by reaction of an alkylsilane in a plasma of a relatively inert gas.
摘要:
A method for processing a substrate comprising depositing a dielectric layer comprising silicon, oxygen, and carbon on the substrate by chemical vapor deposition, wherein the dielectric layer has a carbon content of at least 1% by atomic weight and a dielectric constant of less than about 3, and depositing a silicon and carbon containing layer on the dielectric layer. The dielectric constant of a dielectric layer deposited by reaction of an organosilicon compound having three or more methyl groups is significantly reduced by further depositing an amorphous hydrogenated silicon carbide layer by reaction of an alkylsilane in a plasma of a relatively inert gas.
摘要:
A method for processing a substrate comprising depositing a dielectric layer comprising silicon, oxygen, and carbon on the substrate by chemical vapor deposition, wherein the dielectric layer has a carbon content of at least 1% by atomic weight and a dielectric constant of less than about 3, and depositing a silicon and carbon containing layer on the dielectric layer. The dielectric constant of a dielectric layer deposited by reaction of an organosilicon compound having three or more methyl groups is significantly reduced by further depositing an amorphous hydrogenated silicon carbide layer by reaction of an alkylsilane in a plasma of a relatively inert gas.
摘要:
A silicon oxide layer is produced by plasma enhanced oxidation of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. Films having low moisture content and resistance to cracking are deposited by introducing oxygen into the processing chamber at a flow rate of less than or equal to the flow rate of the organosilicon compounds, and generating a plasma at a power density ranging between 0.9 W/cm2 and about 3.2 W/cm2. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. The organosilicon compound preferably has 2 or 3 carbon atoms bonded to each silicon atom, such as trimethylsilane, (CH3)3SiH. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.
摘要翻译:氧化硅层通过有机硅化合物的等离子体增强氧化制备,以沉积碳原子量至少为1%的膜。 通过以小于或等于有机硅化合物的流速的流量将氧引入处理室,并且以0.9W / cm 2的功率密度产生等离子体来沉积具有低水分含量和耐开裂性的膜 和约3.2W / cm 2。 可以引入任选的载气,以便以小于或等于有机硅化合物的流速的流速促进沉积过程。 有机硅化合物优选与每个硅原子键合2或3个碳原子,例如三甲基硅烷,(CH 3)3 SiH。 可以通过暂时增加有机硅化合物的氧化而在氧化硅层附近形成富氧表面。
摘要:
A silicon oxide layer is produced by plasma enhanced decomposition of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.
摘要:
A silicon oxide layer is produced by plasma enhanced decomposition of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.
摘要:
A silicon oxide layer is produced by plasma enhanced decomposition of an organosilicon compound to deposit films having a carbon content of at least 1% by atomic weight. An optional carrier gas may be introduced to facilitate the deposition process at a flow rate less than or equal to the flow rate of the organosilicon compounds. An oxygen rich surface may be formed adjacent the silicon oxide layer by temporarily increasing oxidation of the organosilicon compound.
摘要:
A method of depositing and etching dielectric layers having low dielectric constants and etch rates that vary by at least 3:1 for formation of horizontal interconnects. The amount of carbon or hydrogen in the dielectric layer is varied by changes in deposition conditions to provide low k dielectric layers that can replace etch stop layers or conventional dielectric layers in damascene applications. A dual damascene structure having two or more dielectric layers with dielectric constants lower than about 4 can be deposited in a single reactor and then etched to form vertical and horizontal interconnects by varying the concentration of a carbon:oxygen gas such as carbon monoxide. The etch gases for forming vertical interconnects preferably comprises CO and a fluorocarbon, and CO is preferably excluded from etch gases for forming horizontal interconnects.
摘要:
A method of depositing and etching dielectric layers having low dielectric constants and etch rates that vary by at least 3:1 for formation of horizontal interconnects. The amount of carbon or hydrogen in the dielectric layer is varied by changes in deposition conditions to provide low k dielectric layers that can replace etch stop layers or conventional dielectric layers in damascene applications. A dual damascene structure having two or more dielectric layers with dielectric constants lower than about 4 can be deposited in a single reactor and then etched to form vertical and horizontal interconnects by varying the concentration of a carbon:oxygen gas such as carbon monoxide. The etch gases for forming vertical interconnects preferably comprises CO and a fluorocarbon, and CO is preferably excluded from etch gases for forming horizontal interconnects.