摘要:
A method for producing a conductive nitride semiconductor substrate circuit includes the steps of forming, on an underlying substrate, a mask including dot or stripe masking portions having a width or diameter of 10 to 100 μm and arranged at a spacing of 250 to 10,000 μm; growing a nitride semiconductor crystal on the underlying substrate by hydride vapor phase epitaxy (HVPE) at a growth temperature of 1,040° C. to 1,150° C. by supplying a group III source gas, a group V source gas, and a silicon-containing gas in a V/III ratio of 1 to 10; and removing the underlying substrate, thus forming a free-standing conductive nitride semiconductor crystal substrate having a resistivity r of 0.0015 Ωcm≦r≦0.01 Ωcm, a thickness of 100 μm or more, and a radius of bow curvature U of 3.5 m≦U≦8 m.
摘要:
A method for producing a conductive nitride semiconductor substrate circuit includes the steps of forming, on an underlying substrate, a mask including dot or stripe masking portions having a width or diameter of 10 to 100 μm and arranged at a spacing of 250 to 10,000 μm; growing a nitride semiconductor crystal on the underlying substrate by hydride vapor phase epitaxy (HVPE) at a growth temperature of 1,040° C. to 1,150° C. by supplying a group III source gas, a group V source gas, and a silicon-containing gas in a V/III ratio of 1 to 10; and removing the underlying substrate, thus forming a free-standing conductive nitride semiconductor crystal substrate having a resistivity r of 0.0015 Ωcm≦r≦0.01 Ωcm, a thickness of 100 μm or more, and a radius of bow curvature U of 3.5 m≦U≦8 m.
摘要:
Group III nitride semiconductor crystals of a size appropriate for semiconductor devices and methods for manufacturing the same, Group III nitride semiconductor devices and methods for manufacturing the same, and light-emitting appliances. A method of manufacturing a Group III nitride semiconductor crystal includes a process of growing at least one Group III nitride semiconductor crystal substrate on a starting substrate, a process of growing at least one Group III nitride semiconductor crystal layer on the Group III nitride semiconductor crystal substrate, and a process of separating a Group III nitride semiconductor crystal, constituted by the Group III nitride semiconductor crystal substrate and the Group III nitride semiconductor crystal layer, from the starting substrate, and is characterized in that the Group III nitride semiconductor crystal is 10 μm or more but 600 μm or less in thickness, and is 0.2 mm or more but 50 mm or less in width.
摘要:
The invention provides Group III nitride semiconductor crystals of a size appropriate for semiconductor devices and methods for manufacturing the same, Group III nitride semiconductor devices and methods for manufacturing the same, and light-emitting appliances. A method of manufacturing a Group III nitride semiconductor crystal includes a process of growing at least one Group III nitride semiconductor crystal substrate on a starting substrate, a process of growing at least one Group III nitride semiconductor crystal layer on the Group III nitride semiconductor crystal substrate, and a process of separating a Group III nitride semiconductor crystal, constituted by the Group III nitride semiconductor crystal substrate and the Group III nitride semiconductor crystal layer, from the starting substrate, and is characterized in that the Group III nitride semiconductor crystal is 10 μm or more but 600 μm or less in thickness, and is 0.2 mm or more but 50 mm or less in width.
摘要:
The present method of forming a nitride semiconductor epitaxial layer includes the steps of growing at least one layer of nitride semiconductor epitaxial layer on a nitride semiconductor substrate having a dislocation density lower than or equal to 1×107 cm−2 with a chemical decomposition layer interposed therebetween, the chemical decomposition layer being chemically decomposed at least with either a gas or an electrolytic solution, and decomposing the chemical decomposition layer at least with either the gas or the electrolytic solution at least either during or after the step of growing the nitride semiconductor epitaxial layer, thereby separating the nitride semiconductor epitaxial layer from the nitride semiconductor substrate. A high-quality nitride semiconductor epitaxial layer suffering less damage when separated from the nitride semiconductor substrate is thereby formed.
摘要:
The invention provides Group III nitride semiconductor crystals of a size appropriate for semiconductor devices and methods for manufacturing the same, Group III nitride semiconductor devices and methods for manufacturing the same, and light-emitting appliances. A method of manufacturing a Group III nitride semiconductor crystal includes a process of growing at least one Group III nitride semiconductor crystal substrate on a starting substrate, a process of growing at least one Group III nitride semiconductor crystal layer on the Group III nitride semiconductor crystal substrate, and a process of separating a Group III nitride semiconductor crystal, constituted by the Group III nitride semiconductor crystal substrate and the Group III nitride semiconductor crystal layer, from the starting substrate, and is characterized in that the Group III nitride semiconductor crystal is 10 μm or more but 600 μm or less in thickness, and is 0.2 mm or more but 50 mm or less in width.
摘要:
Group III nitride semiconductor crystals of a size appropriate for semiconductor devices and methods for manufacturing the same, Group III nitride semiconductor devices and methods for manufacturing the same, and light-emitting appliances. A method of manufacturing a Group III nitride semiconductor crystal includes a process of growing at least one Group III nitride semiconductor crystal substrate on a starting substrate, a process of growing at least one Group III nitride semiconductor crystal layer on the Group III nitride semiconductor crystal substrate, and a process of separating a Group III nitride semiconductor crystal, constituted by the Group III nitride semiconductor crystal substrate and the Group III nitride semiconductor crystal layer, from the starting substrate, and is characterized in that the Group III nitride semiconductor crystal is 10 μm or more but 600 μm or less in thickness, and is 0.2 mm or more but 50 mm or less in width.
摘要:
The present method of forming a nitride semiconductor epitaxial layer includes the steps of growing at least one layer of nitride semiconductor epitaxial layer on a nitride semiconductor substrate having a dislocation density lower than or equal to 1×107 cm−2 with a chemical decomposition layer interposed therebetween, the chemical decomposition layer being chemically decomposed at least with either a gas or an electrolytic solution, and decomposing the chemical decomposition layer at least with either the gas or the electrolytic solution at least either during or after the step of growing the nitride semiconductor epitaxial layer, thereby separating the nitride semiconductor epitaxial layer from the nitride semiconductor substrate. A high-quality nitride semiconductor epitaxial layer suffering less damage when separated from the nitride semiconductor substrate is thereby formed.
摘要:
In a vertical semiconductor device including a channel in an opening, a semiconductor device whose high-frequency characteristics can be improved and a method for producing the semiconductor device are provided. The semiconductor device includes n-type GaN-based drift layer 4/p-type GaN-based barrier layer 6/n-type GaN-based contact layer 7. An opening 28 extends from a top layer and reaches the n-type GaN-based drift layer. The semiconductor device includes a regrown layer 27 located so as to cover the opening, the regrown layer 27 including an electron drift layer 22 and an electron supply layer 26, a source electrode S, a drain electrode D, and a gate electrode G located on the regrown layer. Assuming that the source electrode serving as one electrode and the drain electrode serving as the other electrode constitute a capacitor, the semiconductor device includes a capacitance-decreasing structure that decreases the capacitance of the capacitor.
摘要:
There are provided a high current semiconductor device that has low on-resistance, high mobility, and good pinch-off characteristics and in which a kink phenomenon is not easily caused even if a drain voltage is increased, and a method for producing the semiconductor device. The semiconductor device of the present invention includes a GaN-based layered body 15 having an opening 28, a regrown layer 27 including a channel, a gate electrode G, a source electrode S, and a drain electrode D. The regrown layer 27 includes an electron transit layer 22 and an electron supply layer 26. The GaN-based layered body includes a p-type GaN layer 6 whose end surface is covered by the regrown layer in the opening, and a p-side electrode 11 that is in ohmic contact with the p-type GaN layer is disposed.