摘要:
A transmission housing having a modulatable power transmission therein which includes a clutch having interleaved clutch plates and having a central power transmitting shaft extending axially through the clutch. The clutch includes a fluid operated movable piston for effecting clutch operation by compression of the plates. The piston has a smaller piston area and a larger piston area, the smaller piston area has fluid flow directed to it at a variable fluid pressure whereby the clutch is modulatable. The larger piston area is adapted to have fluid flow directed thereto to effect maximum and unmodulatable engagement of the clutch. A spring loaded normally closed trigger valve controls fluid flow to the larger piston area in response to fluid pressure above a predetermined amount at the smaller piston area. The trigger valve is mounted on the outside of the transmission housing and is readily accessible for adjustment, for example. The trigger valve is normally closed so that pressure fluid is directed to the smaller piston area at a variable fluid pressure whereby the clutch is modulatable. When the valve is open by fluid pressure over a predetermined amount, the valve permits fluid flow to the larger piston area to effect maximum and unmodulatable engagement of the clutch for full clutch capacity.
摘要:
The present invention is a pressure regulator for regulating a fluctuatable fluid pressure of a fluid flow, the fluid flow being received from a first device and being transmitted to a second device, including a spool valve being translatable between a closed non-regulating disposition and an open regulating disposition, a throttled portion of a fluid flow acting on a first spool working surface and a main portion of the fluid flow acting on a second opposed spool working surface. A method of regulating a fluctuatable fluid pressure is further included.
摘要:
A method of fabricating a rare earth oxide buffered III-N on silicon wafer including providing a crystalline silicon substrate, depositing a rare earth oxide structure on the silicon substrate including one or more layers of single crystal rare earth oxide, and depositing a layer of single crystal III-N material on the rare earth oxide structure so as to form an interface between the rare earth oxide structure and the layer of single crystal III-N material. The layer of single crystal III-N material produces a tensile stress at the interface and the rare earth oxide structure has a compressive stress at the interface dependent upon a thickness of the rare earth oxide structure. The rare earth oxide structure is grown with a thickness sufficient to provide a compressive stress offsetting at least a portion of the tensile stress at the interface to substantially reduce bowing in the wafer.
摘要:
III-N material grown on a buffer on a substrate that includes one of a single crystal silicon or a single crystal sapphire. A buffer of single crystal alloy, including one of ErxAl1-xN or (RE1yRE21-y)xAl1-xN, is positioned on the substrate. A layer of single crystal III-N material is positioned on the surface of the buffer and the single crystal alloy has a lattice constant substantially crystal lattice matched to the layer of single crystal III-N material. When the III-N material is GaN, the x in the formula for the alloy varies from less than 1 adjacent the substrate to greater than or equal to 0.249 adjacent the layer of single crystal GaN.
摘要:
A heterostructure grown on a silicon substrate includes a single crystal rare earth oxide template positioned on a silicon substrate, the template being substantially crystal lattice matched to the surface of the silicon substrate. A heterostructure is positioned on the template and defines at least one heterojunction at an interface between a III-N layer and a III-III-N layer. The template and the heterostructure are crystal matched to induce an engineered predetermined tensile strain at the at least one heterojunction. A single crystal rare earth oxide dielectric layer is grown on the heterostructure so as to induce an engineered predetermined compressive stress in the single crystal rare earth oxide dielectric layer and a tensile strain in the III-III-N layer. The tensile strain in the III-III-N layer and the compressive stress in the REO layer combining to induce a piezoelectric field leading to higher carrier concentration in 2DEG at the heterojunction.
摘要:
A III-N template formed on a silicon substrate includes a Distributed Bragg Reflector positioned on the silicon substrate. The Distributed Bragg Reflector is substantially crystal lattice matched to the surface of the silicon substrate. An aluminum oxide layer is positioned on the surface of the Distributed Bragg Reflector and substantially crystal lattice matched to the surface of the Distributed Bragg Reflector. A layer of aluminum nitride (AlN) is positioned on the surface of the aluminum oxide layer and substantially crystal lattice matched to the surface of the aluminum oxide layer. A III-N LED structure including at least one III-N layer can then be grown on the aluminum nitride layer and substantially crystal lattice matched to the surface of the aluminum nitride layer.
摘要:
A bearing arrangement to reduce the effects of thermal expansion in a marine transmission includes a pinion gear thrust bearing, a clutch shaft thrust bearing, a shaft roller bearing and a thrust washer. The clutch shaft thrust bearing is retained on one end of a clutch shaft and the shaft roller bearing is retained on the other end of the clutch shaft. A pinion gear is rotatably retained on the clutch shaft. The pinion gear thrust bearing is retained on the pinion gear with a bearing retainer. The thrust washer is retained on the bearing retainer. An end of the clutch shaft thrust bearing rotates relative to the thrust washer and makes contact therewith. The length of thermal expansion in the transmission housing is limited to the distance between the opposing ends of the two thrust bearings.
摘要:
A method of forming a template on a silicon substrate includes epitaxially growing a template of single crystal ternary rare earth oxide on a silicon substrate and epitaxially growing a single crystal semiconductor active layer on the template. The active layer has either a cubic or a hexagonal crystal structure. During the epitaxial growth of the template, a partial pressure of oxygen is selected and a ratio of metals included in the ternary rare earth oxide is selected to match crystal spacing and structure of the template at a lower interface to the substrate and to match crystal spacing and structure of the template at an upper interface to crystal spacing and structure of the semiconductor active layer. A high oxygen partial pressure during growth of the template produces a stabilized cubic crystal structure and a low oxygen partial pressure produces a predominant peak with a hexagonal crystal structure.
摘要:
A bearing arrangement is provided that reduces effects of differences in rates of thermal expansion between transmission housings and shaft assemblies that are made from different materials. The bearing arrangement locates the bearings with respect to other components of a shaft assembly in a manner that establishes a bearing setting stack path along components that are made from materials having common coefficients of thermal expansion, despite the shaft assembly and bearing arrangements being mounted within a housing that is made from a material which has a dissimilar coefficient of thermal expansion.
摘要:
A method of fabricating a layer of single crystal semiconductor material on a silicon substrate including providing a crystalline silicon substrate and epitaxially depositing a nano structured interface layer on the substrate. The nano structured interface layer has a thickness up to a critical thickness. The method further includes epitaxially depositing a layer of single crystal semiconductor material in overlying relationship to the nano structured interface layer. Preferably, the method includes the nano structured interface layer being a layer of coherently strained nano dots of selected material. The critical thickness of the nano dots includes a thickness up to a thickness at which the nano dots become incoherent.