摘要:
The invention is directed toward a cartilage repair assembly comprising a shaped structure of subchondral bone with an integral overlying cartilage cap which is treated to remove cellular debris and proteoglycans and milled cartilage in a bioabsorbable carrier. The shaped structure is dimensioned to fit in a drilled bore in a cartilage defect area so that said shaped bone and cartilage cap when centered in the bore does not engage the side wall of the bore and is positioned from the side wall of the bone a distance ranging from 10 microns to 1000 microns and is surrounded by milled cartilage and a fibrin thrombin glue. A method for inserting the assembly into a cartilage defect area is disclosed.
摘要:
The invention is directed toward a cartilage repair assembly comprising a shaped structure of subchondral bone with an integral overlying cartilage cap which is treated to remove cellular debris and proteoglycans and milled cartilage in a bioabsorbable carrier. The shaped structure is dimensioned to fit in a drilled bore in a cartilage defect area so that said shaped bone and cartilage cap when centered in the bore does not engage the side wall of the bore in an interference fit and is surrounded by milled cartilage and carrier. A method for inserting the assembly into a cartilage defect area is disclosed.
摘要:
The present invention provides processes for producing porous silk fibroin scaffold material. The porous silk fibroin scaffold can be used for tissue engineering. The porosity of the silk fibroin scaffolds described herein can be adjusted as to mimic the gradient of densities found in natural tissue. Accordingly, methods for engineering of 3-dimensional tissue, e.g. bone and cartilage, using the silk fibroin scaffold material are also provided.
摘要:
The invention provides a method for forming an immobilized agent gradient within a 3-dimensional porous scaffold. A 3-dimensional scaffold formed from a biocompatible material is provided. The surface of the scaffold and/ or the agent is activated so as to allow binding of the agent to the scaffold. The activated scaffold is contacted with a solution containing the agent. Contact with the solution is maintained for a sufficient period of time to allow diffusion of the solution through a portion of the scaffold, thereby forming a desired gradient of the agent through the 3-dimensional scaffold.
摘要:
The present invention provides processes for producing porous silk fibroin scaffold material. The porous silk fibroin scaffold can be used for tissue engineering. The porosity of the silk fibroin scaffolds described herein can be adjusted to mimic the gradient of densities found in natural tissue. Accordingly, methods for engineering of 3-dimensional tissue, e.g. bone and cartilage, using the silk fibroin scaffold material are also provided.
摘要:
Described are tubular silk fibroin compositions and methods for their manufacture and use. Tubular compositions as described herein can be produced in a range of high burst strengths, can easily be made in a range of inner diameters, can be derivatized with functional moieties, and can be produced in a range of permeabilities suitable for particularized uses. In one aspect, the tubular compositions can be used in the repair or replacement of damaged or diseased blood vessels, including, but not limited to vessels smaller than about 6 mm.
摘要:
A system and method for making a biomaterial device includes a support structure providing a shape for a biomaterial device. At least one applicator has a supply of biomaterial solution and is positioned along the support structure. The at least one applicator forms a biomaterial fiber by applying shear force to the biomaterial solution and delivering the biomaterial fiber to the support structure. A controller causes relative movement between the support structure and the at least one applicator, and the biomaterial fiber is arranged on the support structure according to the relative movement to form the biomaterial device. The biomaterial may be silk fibroin which may be wound onto a reciprocating and rotating mandrel. Control over the properties of the biomaterial device is achieved through appropriate selection of material processing, winding strategy, and post-winding processing.
摘要:
The invention relates to a tissue replacement structure comprising (a) a preformed three-dimensional tissue which can be produced by obtaining cells from a human or animal organism and culturing them in a stationary fashion as a suspension culture in cell culture vessels with hydrophobic surface and tapering bottom until a cell aggregate is formed which has differentiated cells embedded therein and has an outer region wherein cells capable of proliferation and migration are present; (b) (i) an autologous cell suspension which can be produced from endogenous cells, with endogenous serum being added, with no addition of growth-promoting compounds, (ii) implants or support materials and/or (iii) growth factors; and/or (c) can be obtained by exposure of the tissue according to (a) to electromagnetic fields, mechanical stimulation and/or ultrasound.
摘要:
Methods for determining cell chirality using micropatterned substrates are disclosed. Also provided are methods for diagnosing diseases such as genetic diseases or cancer by comparing the chirality of sample cells from a subject with normal cells, and determining a difference in chirality between the sample cells and normal cells.
摘要:
The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.