摘要:
The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.
摘要:
Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
摘要:
The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.
摘要:
Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
摘要:
Silicon nanoparticle inks provide a basis for the formation of desirable materials. Specifically, composites have been formed in thin layers comprising silicon nanoparticles embedded in an amorphous silicon matrix, which can be formed at relatively low temperatures. The composite material can be heated to form a nanocrystalline material having crystals that are non-rod shaped. The nanocrystalline material can have desirable electrical conductive properties, and the materials can be formed with a high dopant level. Also, nanocrystalline silicon pellets can be formed from silicon nanoparticles deposited form an ink in which the pellets can be relatively dense although less dense than bulk silicon. The pellets can be formed from the application of pressure and heat to a silicon nanoparticle layer.
摘要:
Improved silicon/germanium nanoparticle inks are described that have silicon/germanium nanoparticles well distributed within a stable dispersion. In particular the inks are formulated with a centrifugation step to remove contaminants as well as less well dispersed portions of the dispersion. A sonication step can be used after the centrifugation, which is observed to result in a synergistic improvement to the quality of some of the inks. The silicon/germanium ink properties can be engineered for particular deposition applications, such as spin coating or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon/germanium nanoparticles. The silicon/germanium nanoparticles are well suited for forming semiconductor components, such as components for thin film transistors or solar cell contacts.
摘要:
High quality silicon inks are used to form polycrystalline layers within thin film solar cells having a p-n junction. The particles deposited with the inks can be sintered to form the silicon film, which can be intrinsic films or doped films. The silicon inks can have a z-average secondary particle size of no more than about 250 nm as determined by dynamic light scattering on an ink sample diluted to 0.4 weight percent if initially having a greater concentration. In some embodiments, an intrinsic layer can be a composite of an amorphous silicon portion and a crystalline silicon portion.
摘要:
Example methods and apparatus to manage object locks are disclosed. A disclosed example method includes receiving an object lock request from a processor, the lock request associated with object lock code to lock an object, and generating object lock-bypass code based on a type of the processor, the object lock-bypass code to execute in a managed runtime in response to receiving the object lock request. The example method also includes identifying a type of instruction set architecture (ISA) associated with the processor, invoking a checkpoint instruction for the processor based on the identified ISA, suspending the object lock code from executing and executing target code when the object is uncontended, and allowing the object lock code to execute when the object is contended.
摘要:
In the case of printing at high addressability, where the cell size is smaller than the spot size, an image can be decimated in a manner that will limit the large accumulation of printed material. The proper decimation of the image will depend on the spot size, the physics of drop coalescence and the addressability during printing. A simple method of using concentric decimation is disclosed herein to enable this process.
摘要:
An inhomogeneous optical cavity is tuned by changing its shape, such as by changing reflection surface positions to change tilt angle, thickness, or both. Deformable components such as elastomer spacers can be connected so that, when deformed, they change relative positions of structures with light-reflective components such as mirrors, changing cavity shape. Electrodes can cause deformation, such as electrostatically, electromagnetically, or piezoelectrically, and can also be used to measure thicknesses of the cavity. The cavity can be tuned, for example, across a continuous spectrum, to a specific wavelength band, to a shape that increases or decreases the number of modes it has, to a series of transmission ranges each suitable for a respective light source, with a modulation that allows lock-in with photosensing for greater sensitivity, and so forth. The optical cavity can be a linear variable filter fabricated on the photosensitive surface of a photosensing component such as a photosensor array or a position-sensitive detector.