摘要:
This invention is embodied in an improved process for growing high-quality silicon dioxide layers on silicon by subjecting it to a gaseous mixture of nitrous oxide (N2O) and ozone (O3). The presence of O3 in the oxidizing ambiance greatly enhances the oxidation rate compared to an ambiance in which N2O is the only oxidizing agent. In addition to enhancing the oxidation rate of silicon, it is hypothesized that the presence of O3 interferes with the growth of a thin silicon oxynitride layer near the interface of the silicon dioxide layer and the unreacted silicon surface which makes oxidation in the presence of N2O alone virtually self-limiting. The presence of O3 in the oxidizing ambiance does not impair oxide reliability, as is the case when silicon is oxidized with N2O in the presence of a strong, fluorine-containing oxidizing agent such as NF3 or SF6.
摘要翻译:本发明体现在用于通过使其经受一氧化二氮(N 2 O 2 O)和臭氧(O 3 O 3)的气体混合物在硅上生长高质量二氧化硅层的改进方法, SUB>)。 氧化气氛中O 3 3的存在与其中N 2 O 2是唯一的氧化剂的环境相比,大大地提高了氧化速率。 除了提高硅的氧化速率之外,假设O 3 3的存在妨碍了二氧化硅层和未反应的硅表面界面附近的薄氧氮化硅层的生长, 在N 2 O 2存在下进行氧化,实际上是自限制的。 氧化气氛中的O 3 3的存在不会损害氧化物的可靠性,如在强的氟化物存在下用N 2 O 2氧化硅的情况, 含有氧化剂如NF 3或SF 6。
摘要:
This invention is embodied in an improved process for growing high-quality silicon dioxide layers on silicon by subjecting it to a gaseous mixture of nitrous oxide (N2O) and ozone (O3). The presence of O3 in the oxidizing ambiance greatly enhances the oxidation rate compared to an ambiance in which N2O is the only oxidizing agent. In addition to enhancing the oxidation rate of silicon, it is hypothesized that the presence of O3 interferes with the growth of a thin silicon oxynitride layer near the interface of the silicon dioxide layer and the unreacted silicon surface which makes oxidation in the presence of N2O alone virtually self-limiting The presence of O3 in the oxidizing ambiance does not impair oxide reliability, as is the case when silicon is oxidized with N2O in the presence of a strong, fluorine-containing oxidizing agent such as NF3 or SF6.
摘要翻译:本发明体现在用于通过使其经受一氧化二氮(N 2 O 2 O)和臭氧(O 3 O 3)的气体混合物在硅上生长高质量二氧化硅层的改进方法, SUB>)。 氧化气氛中O 3 3的存在与其中N 2 O 2是唯一的氧化剂的环境相比,大大地提高了氧化速率。 除了提高硅的氧化速率之外,假设O 3 3的存在妨碍了二氧化硅层和未反应的硅表面界面附近的薄氧氮化硅层的生长,其中 在N 2 O 2存在下进行氧化,实际上是自限制的。 氧化气氛中的O 3 3的存在不会损害氧化物的可靠性,如在强的氟化物存在下用N 2 O 2氧化硅的情况, 含有氧化剂如NF 3或SF 6。
摘要:
A method of making a semiconductor device includes forming a pillar shaped semiconductor device surrounded by an insulating layer such that a contact hole in the insulating layer exposes an upper surface of the semiconductor device. The method also includes forming a shadow mask layer over the insulating layer such that a portion of the shadow mask layer overhangs a portion of the contact hole, forming a conductive layer such that a first portion of the conductive layer is located on the upper surface of the semiconductor device exposed in the contact hole and a second portion of the conductive layer is located over the shadow mask layer, and removing the shadow mask layer and the second portion of the conductive layer.
摘要:
A method of preparing a clean substrate surface for blanket or selective epitaxial deposition of silicon-containing and/or germanium-containing films. In addition, a method of growing the silicon-containing and/or germanium-containing films, where both the substrate cleaning method and the film growth method are carried out at a temperature below 750° C., and typically at a temperature from about 700° C. to about 500° C. The cleaning method and the film growth method employ the use of radiation having a wavelength ranging from about 310 nm to about 120 nm in the processing volume in which the silicon-containing film is grown. Use of this radiation in combination with particular partial pressure ranges for the reactive cleaning or film-forming component species enable the substrate cleaning and epitaxial film growth at temperatures below those previously known in the industry.
摘要:
In the formation of semiconductor devices, a processing method is provided, including steps for forming an oxide layer. The embodied methods involve a series of oxidation steps, with optional interposed cleanings, as well as an optional conditioning step after oxidation. In a preferred embodiment, these steps are clustered and transportation between the clustered process chambers takes place in a controlled environment such as nitrogen or a vacuum. In some embodiments, the method provides an oxide layer to be used as part of the device, such as a tunnel oxide for a flash-EEPROM, or as a general gate oxide. Alternatively, the steps can be used to sculpt through oxidation various levels of a substrate, thereby allowing for embedded memory architecture. Cleaning between oxidation steps offers the advantage of providing a more defect-free oxide layer or providing access to a more defect-free level of substrate.
摘要:
A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
摘要:
Methods of forming a roughened surface through diffusion-enhanced crystallization of an amorphous material are disclosed. In one aspect, conductive hemispherical grain silicon can be formed through dopant diffusion-enhanced crystallization of one or more layers of amorphous silicon. To further enhance uniformity in the formation of the hemispherical grain silicon, the exposed surface of the amorphous silicon can be seeded before crystallization to further enhance uniformity of the surface structures formed in the hemispherical grain silicon.
摘要:
A method and apparatus for the formation of oxide in a manner having a planarizing effect on underlying material, e.g., silicon. In particular, an oxide having a nonuniform thickness profile is grown on the underlying material. The nonuniform thickness profile of the oxide is selected according to the nonuniform profile of the underlying material. Subsequent removal of the oxide leaves behind a planarized surface of the underlying material, as compared to the pre-oxidized surface.
摘要:
Methods of forming a roughened surface through diffusion-enhanced crystallization of an amorphous material are disclosed. In one aspect, conductive hemispherical grain silicon can be formed through dopant diffusion-enhanced crystallization of one or more layers of amorphous silicon. To further enhance uniformity in the formation of the hemispherical grain silicon, the exposed surface of the amorphous silicon can be seeded before crystallization to further enhance uniformity of the surface structures formed in the hemispherical grain silicon.
摘要:
A capacitor having a double sided electrode for enhanced capacitance. In one embodiment, the double sided electrode capacitor is a stacked container capacitor used in a dynamic random access memory circuit. The double sided electrode is preferably formed of a conductive metal, provided that an oxide of the metal is conductive. The double sided electrode capacitor provides a capacitor that has high storage capacitance which provides an increased efficiency for a cell without an increase in the size of the cell.