摘要:
A chip stacking structure including a carrier, a first redistribution layer, a second redistribution layer, at least one first chip, at least one second chip, and at least one conductor is provided. The carrier has a first surface and a second surface opposite to each other. The carrier has at least one through hole. The first and second redistribution layers are disposed on the first and second surfaces of the carrier, respectively. The first and second chips are disposed on the first and second surfaces of the carrier and electrically connected with the first and second redistribution layers, respectively. The conductor is disposed on one of the first and second chips. The conductor is disposed in the through hole. The first and second chips are electrically connected by the conductor. A gap is formed between the conductor and an inner wall of the carrier which surrounds the through hole.
摘要:
A test structure including a substrate, at least one conductive plug, a first conductive trace and a second conductive trace is provided. The substrate has a first area and a second area. The at lest one conductive plug is disposed in the substrate in the first area, wherein the conductive plug does not penetrate through the substrate.The first conductive trace is disposed on the conductive plug and on the substrate in the first area. The second conductive trace is disposed on the substrate in the second area. It is noted that the first conductive trace and the second conductive trace have the same material and the same shape. A measurement method of the above-mentioned test structure is also provided.
摘要:
A heat-pipe electric-power generating device capable of converting thermal energy to electrical energy is provided. The device includes a heat pipe and the heat pipe has a sealed internal space that can produce a steam-flow from an evaporating end to a condensing end according to a pressure difference caused by a temperature difference between the ends. A steam-flow electric-power generating device has at least a rotating portion disposed in the internal space for generating electric power when driven by a steam-flow. An electrode structure is used for leading the electric power out. The heat pipe is maintained in a sealed condition. In addition, several heat-pipe electric-power generating devices can be arranged into an array to form a heat electric-power generator or disposed inside an apparatus with a heat source for recycling the conventional waste thermal energy into useful electrical energy.
摘要:
A chip package structure includes a substrate, a chip, a thermal conductive layer, a plurality of signal contacts, and a molding compound. The substrate includes a plurality of first thermal conductive vias, a connecting circuit, and a plurality of signal vias electrically connected to the connecting circuit, and the substrate has a chip disposing region. The chip is disposed on the chip disposing region of the substrate and electrically connected to the signal vias through the connecting circuit. The thermal conductive layer is disposed over the substrate, connected to the first thermal conductive vias, and located above the chip disposing region. Besides, the thermal conductive layer has first openings exposing the signal vias. The signal contacts are respectively disposed in the first openings and connected to the signal vias. The molding compound encapsulates the chip.
摘要:
A heat-pipe electric-power generating device capable of converting thermal energy to electrical energy is provided. The device includes a heat pipe and the heat pipe has a sealed internal space that can produce a steam-flow from an evaporating end to a condensing end according to a pressure difference caused by a temperature difference between the ends. A steam-flow electric-power generating device has at least a rotating portion disposed in the internal space for generating electric power when driven by a steam-flow. An electrode structure is used for leading the electric power out. The heat pipe is maintained in a sealed condition. In addition, several heat-pipe electric-power generating devices can be arranged into an array to form a heat electric-power generator or disposed inside an apparatus with a heat source for recycling the conventional waste thermal energy into useful electrical energy.
摘要:
A chip package structure includes a substrate, a chip, a thermal conductive layer, a plurality of signal contacts, and a molding compound. The substrate includes a plurality of first thermal conductive vias, a connecting circuit, and a plurality of signal vias electrically connected to the connecting circuit, and the substrate has a chip disposing region. The chip is disposed on the chip disposing region of the substrate and electrically connected to the signal vias through the connecting circuit. The thermal conductive layer is disposed over the substrate, connected to the first thermal conductive vias, and located above the chip disposing region. Besides, the thermal conductive layer has first openings exposing the signal vias. The signal contacts are respectively disposed in the first openings and connected to the signal vias. The molding compound encapsulates the chip.
摘要:
A light emitting apparatus comprising a substrate, a first functional chip and a first light emitting component is provided. The substrate, the first functional chip, and the first light emitting component have a plurality of first bumps. In addition, the first functional chip has a plurality of first vias. The first light emitting component and the first functional chip are stacked on the substrate. Hence, the first light emitting component is electrically connected to the first functional chip and the substrate by the first vias and the first bumps.
摘要:
A light emitting apparatus comprising a substrate, a first functional chip and a first light emitting component is provided. The substrate, the first functional chip, and the first light emitting component have a plurality of first bumps. In addition, the first functional chip has a plurality of first vias. The first light emitting component and the first functional chip are stacked on the substrate. Hence, the first light emitting component is electrically connected to the first functional chip and the substrate by the first vias and the first bumps.