摘要:
A porous material having fine holes with controlled diameters and a catalyst having an active ingredient supported in the fine holes in the porous material are used. According to a first embodiment of the invention, the diameter of the plurality of fine holes is within a range of 8 to 9 Å. The fine hole diameter is preferably from 8 to 9 Å when the diameter is measured in a gas adsorption method in which fine holes with diameters of 3.4 to 14 Å can be measured. The fine hole diameter is also preferably from 8 to 9 Å when the fine hole diameter is calculated from a crystal structure. According to a second embodiment of the invention, the porous material is mesoporous silica. The primary particle diameter of the mesoporous silica is preferably within a range of 150 to 300 nm.
摘要:
This invention provides a method involving the use of a non-ammonia-based deNOx catalyst for reducing the amount of NOx in exhaust combustion gas discharged from a boiler and an internal-combustion engine, wherein NOx and CO contained in exhaust gas are allowed to selectively react to reduce and remove NOx. This method involves the use of a catalyst comprising a cerium-zirconium composite oxide with Au supported thereon or a catalyst comprising a cerium-oxide-containing porous carrier with zirconium and Au supported thereon. Use of such catalyst enables purification of NOx and CO in exhaust gas and also enables generation of hydrogen.
摘要:
A Cr trapping agent is disposed so that it contacts with constituting components of the substrate containing Cr. As the Cr trapping agent, an element or Ag is used, wherein the element is stronger in basicity than alkali metals or alkaline earth metals. Since the Cr trapping agent prevents transfer of Cr towards the alkali metals or alkaline earth metals, the reaction between Cr and alkali metals or alkaline earth metals is prevented.
摘要:
According to the present invention, it is possible to provide a catalyst which includes metal clusters containing a non-platinum element as the catalyst active ingredient, these metal clusters having species of a metal having different valences, and exhibits an improved electrode performance per unit price of the used metal, compared to catalysts using platinum. When this catalyst is applied to an electrode catalyst for fuel cell, a low-cost fuel cell system can be realized without using expensive platinum as the active ingredient. This catalyst can be applied to DMFC and PEFC fuel cells.
摘要:
An apparatus and method of highly efficiently purifying nitrogen oxides are provided. An NOx chemisorption reduction catalyst chemically absorbs NOx under a condition that an exhaust gas of an internal combustion engine is an oxidizing atmosphere and deoxidizes adsorbed NOx under a reducing atmosphere. An SOx absorbent absorbs SOx contained in the exhaust gas of the oxidizing atmosphere, and deoxidizes and release SOx absorbed in the reducing atmospheric exhaust gas. The catalyst and absorbent are arranged in the exhaust path to purify the exhaust gas while preventing or suppressing SOx-poisoning of the NOx chemisorption reduction catalyst.
摘要翻译:提供了高效净化氮氧化物的装置和方法。 NOx化学吸附还原催化剂在内燃机的排气是氧化气氛并在还原气氛下脱氧吸附的NOx的条件下,化学吸收NOx。 SO x吸收剂吸收氧化气氛的废气中所含的SOx,并且还原和释放在还原气氛废气中吸收的SO x。 催化剂和吸收剂布置在排气路径中以净化废气,同时防止或抑制NOx化学吸附还原催化剂的SOx中毒。
摘要:
An exhaust gas purification apparatus for use in an internal combustion engine comprises an exhaust gas duct connected to the engine through which the exhaust gas containing NOx gas passes and a catalyst so disposed in the exhaust gas duct that it contacts with the exhaust gas.The catalyst chemically adsorbs NOx under the condition that a stoichiometric amount of a gaseous oxidizing agent present in the exhaust gas is larger than that of a gaseous reducing agent present in the exhaust gas for reducing NOx, while NOx being adsorbed is catalytically reduced in the presence of the reducing agent under the condition that the stoichiometric amount of the oxidizing agent is not larger that of the reducing agent.Thereby, NOx, the lean burn exhaust gas in the engine can be effectively made harmlessly.
摘要:
In an exhaust gas purifying apparatus provided with a lean NOx catalyst supporting a catalyst layer, which contains a NOx trapping component, on a honeycomb substrate formed so as not to cause an alkali attack, the invention prevents trapped NOx from being dissociated and exhausted during the time of a rich spike. A NOx reducing catalyst with the function of reducing NOx by a reductant in a rich or stoichiometric condition, e.g., a three-way catalyst, is disposed downstream of the lean NOx catalyst. In the case of increasing the amount of the NOx trapping component in the lean NOx catalyst to enhance a NOx trapping capability, even if a part of trapped NOx is dissociated during the time of the rich spike, the dissociated NOx can be reduced by the NOx reducing catalyst disposed on the downstream side.
摘要:
In order to remove nitrogen oxide in an exhaust gas released from a lean burn engine, a catalyst: supporting an rare earth metal, an alkali earth metal, titanium, a noble metal, and magnesium on the surface of a porous carrier made of inorganic oxides is provided. In order to manufacture the catalyst, the rare earth metal is supported onto the surface of the carrier first, subsequently the alkali earth metal other than magnesium and titanium are supported, the noble metal is supported, and magnesium is supported finally onto the surface of the carrier.The catalyst of the present invention is scarcely poisoned by SOx in the exhaust gas released from the lean burn engine, and has a heat resistivity durable against high speed driving.
摘要:
An adsorbing substance made of a material having an acid center in its molecular frame is installed in a passage for steam generated in a reactor pressure vessel 1. The adsorbing substance adsorbs and holds N-16 compound for decay. Therefore, the amount of N-16 entering into a turbine system is decreased and dose in the turbine system can be reduced.
摘要:
An object of the present invention is to provide a new exhaust gas purification apparatus for an internal combustion engine operated under a condition of an air fuel ratio leaner than a theoretical air fuel ratio, a method for purification of exhaust gas and an exhaust gas purification catalyst, which is suitable for suppressing degradation of the NOx purification catalyst by sulfur components. An exhaust gas purification apparatus for an internal combustion engine, which comprises an exhaust gas passage for an internal combustion engine into which exhaust gas of lean air fuel ratio and rich or stoichiometric air fuel ratio flows, a NOx trapping catalyst that functions to trap NOx in the exhaust gas when the air fuel ratio is lean, a sulfur component trapping agent for trapping sulfur components in the exhaust gas, which is disposed before the NOx trapping catalyst, and a catalyst for oxidizing the sulfur components, which is disposed before the sulfur component trapping agent, wherein the sulfur component trapping agent has a trapping rate of 85 % or more of an amount of inflow sulfur in a trapping test at a flow rate of 150 ppm SO3-5% O2—balance being N2 gas per 1.5 moles of the sulfur trapping agent at 300° C. and a space velocity of 30,000/h for 1 hour; and the sulfur component trapping agent has a release rate of sulfur amount of 5 % or less of sulfur trapped in the sulfur component trapping agent in a release test under a flow of a 3000 ppm H2-600 ppm C3H6-3000 ppm O2-3.5 % CO—balance being N2 gas at a temperature elevation rate of 10° C. /min from 250 to 750° C. at an sulfur component trapping agent entrance, after the trapping test.