摘要:
A printed-wiring substrate 1 has main-face-side connection terminals 33 for solder-bonding to connection terminals 83 of an IC chip 81 on a main face 1A thereof and back-face-side connection terminals 41 for connecting, through mechanical contact, to connection terminals 93 of a motherboard 91 on a back face 1B thereof. The surface of each of the main-face-side connection terminals 33 is covered with a main-face-side displacement Au plating layer 45 having a thickness of 0.03 to 0.12 &mgr;m, and the surface of each of the back-face-side connection terminals 41 is covered with a back-face-side displacement Au plating layer 55, which is thicker than the main-face-side displacement Au plating layer 45 and has a thickness of 0.2 &mgr;m or greater.
摘要:
A method for fabricating a component board which includes forming a first main-face-side Au plating layer on surfaces of main-face-side connection terminals and a first back-face-side Au plating layer on surfaces of back-face-side connection terminals of the component board; covering the first main-face-side Au plating layer with a protection layer; forming a second back-face-side Au plating layer on the first back-face-side Au plating layer; and removing the protection layer after completing the second Au plating step. Alternatively, the first back-face-side Au plating layer may be removed after completing the masking step. Displacement Au plating is used as the first and second Au plating.
摘要:
In accordance with the present invention, there is provided a ceramic IC package base which comprises a ceramic substrate, and a heat radiating member adhered to a side surface of the ceramic substrate and made of copper or copper alloy. The heat radiating member has an adhering portion at which it is adhered to the ceramic substrate. The adhering portion, when the heat radiating member is observed in a plan view, has one side which is equal to or larger than 8 mm. The adhering portion is of the thickness within the range from 0.25 mm to 0.76 mm. A ceramic IC package cover is also provided.
摘要:
A ceramic substrate comprising a metallic layer on its surface, wherein said metallic layer includes: a silver layer containing silver; a gold layer containing gold; and a nickel layer containing nickel, in this order from an outermost layer of said metallic layer.
摘要:
A ceramic substrate comprising a metallic layer on its surface, wherein said metallic layer includes: a silver layer containing silver; a gold layer containing gold; and a nickel layer containing nickel, in this order from an outermost layer of said metallic layer.
摘要:
An outer lead having a plurality of external leads 1 for electrically connecting the semiconductor IC of a semiconductor IC package to external devices comprises a base plate 11, a plated base structure formed over the surface of the base plate 11 and consisting of a plurality of plated base layers 12, 13 and 14 of Ni or a Ni alloy, and a surface layer 15 of Au or an Au alloy formed over the uppermost plated base layer 14 of the plated base structure. The number of the plated base layers is at least three. Each plated base layer 12, 13 and 14 of the plated base structure is subjected to crystal-growth annealing after being formed by plating to crystal-grow the grains thereof. A method of fabricating such an outer lead is provided.
摘要:
An outer lead having a plurality of external leads 1 for electrically connecting the semiconductor IC of a semiconductor IC package to external devices comprises a base plate 11, a plated base structure formed over the surface of the base plate 11 and consisting of a plurality of plated base layers 12, 13 and 14 of Ni or a Ni alloy, and a surface layer 15 of Au or an Au alloy formed over the uppermost plated base layer 14 of the plated base structure. The number of the plated base layers is at least three. Each plated base layer 12, 13 and 14 of the plated base structure is subjected to crystal-growth annealing after being formed by plating to crystal-grow the grains thereof. A method of fabricating such an outer lead is provided.
摘要:
In order to realize thinned armatures, a winder which winds coils at a high density while restricting coil ends within a restricted space is provided. An armature coil winder for winding coils in an armature core assembly having a plurality of slots in an outer circumference thereof comprising a winding former equipped with a fixed former which guides a coil into two slots and a movable former which restricts a position of a coil end between the slots by moving in the fixed former along both end surfaces of an armature core toward a center thereof, a former slider which shifts the movable former to a specified position, and coil shaping mechanism which is disposed at location other than that of the former slider and equipped with coil shaping blades functioning to shape the coil in the slots, thereby making it possible to wind coils at a high density by effectively utilizing winding spaces.
摘要:
An olefinic thermoplastic elastomer composition which does not exhibit problems due to a softening agent such as an oil is superior in molding processability. The thermoplastic elastomer composition is produced by a heat crosslinking process of a resin-rubber composition that contains an olefinic and/or diene rubber, an olefinic resin, and a vinyl copolymer. The vinyl copolymer is obtained by copolymerizing 20 wt % or more of a vinyl monomer represented by CH2═CHOCOR1 or CH2═CHOR2 wherein R1 and R2 are alkyl groups having 1-6 carbon atoms. The thermoplastic elastomer composition can include a vinyl copolymer that has not undergone a heat crosslinking process.
摘要:
In a resinous circuit board having a circuitized substrate having conductive layers therewithin, a plurality of pin pads formed on a rear surface of the substrate, and a plurality of pins, each pin having a tip end portion and a head portion and soldered to the pin pad in such a manner as to contact at the head portion to the pin pad. The head portion of the pin consists of a flange section which is larger in diameter than the tip end portion, and a part-spherical abutment section bulging from the flange section in the direction opposite to the tip end portion and brought into contact with the pin pad. The part-spherical abutment section is made of eutectic silver solder which is lower in melting point than solder such as Sn—Ag solder which is used for soldering the pin to the pin pad. Since the silver solder and soft solder are present between the flange section and the pin pad, they can release the stress applied to the pin, thus making it possible to increase the joining strength considerably. Further, the above structure can dispense with holes which are formed in the circuitized substrate and in which pins are press-fitted and fixed as in the prior art circuit board.