摘要:
In a method of forming a semiconductor device, and a semiconductor device formed according to the method, an insulating layer is provided on an underlying contact region of the semiconductor device. An opening is formed in the insulating layer to expose the underlying contact region. A seed layer is provided on sidewalls and a bottom of the opening, the seed layer comprising cobalt. A barrier layer of conductive material is provided in a lower portion of the opening, the seed layer being exposed on sidewalls of an upper portion of the opening. A metal layer is provided on the barrier layer in the opening to form an interlayer contact, the metal layer contacting the seed layer at the sidewalls of the upper portion of the opening.
摘要:
Example embodiments relate to a method of forming a hardened porous dielectric layer. The method may include forming a dielectric layer containing porogens on a substrate, transforming the dielectric layer into a porous dielectric layer using a first UV curing process to remove the porogens from the dielectric layer, and transforming the porous dielectric layer into a crosslinked porous dielectric layer using a second UV curing process to generate crosslinks in the porous dielectric layer.
摘要:
In one embodiment, a semiconductor device comprises a semiconductor substrate and a doped conductive layer formed over the semiconductor substrate. A diffusion barrier layer is formed over the doped conductive layer. The diffusion barrier layer comprises an amorphous semiconductor material. After forming the diffusion barrier layer, a heat treatment process may be additionally performed thereon. An ohmic contact layer is formed over the diffusion barrier layer. A metal barrier layer is formed over the ohmic contact layer. A metal layer is formed over the metal barrier layer.
摘要:
A gate of a memory device may include a charge trapping structure having a tunnel oxide layer, a charge storing layer, and a blocking layer on a semiconductor substrate; a conductive pattern on the charge trapping structure, the conductive pattern including metal nitride; an ohmic film on the conductive pattern; and a gate electrode on the ohmic film.
摘要:
A household ice-cream machine comprises a mixing blade driven and rotated by a motor for mixing material for ice-cream in a cylindrical container. A pair of holding members are disposed to be in contact with an outer surface of the cylindrical container. Each of the pair of holding members is formed in an arch shape. Each of the pair of holding members has projections formed on and bent from one end of each of the pair of holding members. The fastened projections are oppositely disposed and connected to each other by a pair of fastening members. Each of a pair of cooling members is formed in an arch shape and has an evaporating pipe integrally formed therein. Each of the pair of cooling members is disposed to be in contact with an outer surface of each of the pair of holding members.
摘要:
A semiconductor memory device, e.g., a charge trapping type non-volatile memory device, may include a charge trapping structure formed in a first area of a substrate and a gate structure formed in a second area of the substrate. The charge trapping structure may include a tunnel oxide layer pattern, a charge trapping layer pattern and a dielectric layer pattern of aluminum-containing tertiary metal oxide. The gate structure may include a gate oxide layer pattern, a polysilicon layer pattern and an ohmic layer pattern of aluminum-containing tertiary metal silicide. A first electrode and a second electrode may be formed on the charge trapping structure. A lower electrode and an upper electrode may be provided on the gate structure. The dielectric layer pattern may have a higher dielectric constant, and the ohmic layer pattern may have improved thermal stability, thereby enhancing programming and erasing operations of the charge trapping type non-volatile memory device.
摘要:
Embodiments of the present invention include semiconductor devices that can be made with relatively low resistance, and methods of forming the semiconductor devices. A resistance reducing layer is formed between a polysilicon layer and a metal layer. As a result, an interface resistance between the polysilicon layer and the metal layer is greatly reduced and a distribution of the interface resistance is very uniform. As a result, a conductive structure including the resistance reducing layer has a greatly reduced sheet resistance to improve electrical characteristics of a semiconductor device having the conductive structure.
摘要:
The present invention provides a scroll-type expander that simultaneously performs expansion and re-heating such that efficient expansion is realized and there is no reduction in efficiency caused by pressure loss occurring during the supply of an working fluid to the scroll-type expander, and that minimizes a difference in temperature between a stationary scroll member and a rotating scroll member, as well as a temperature distribution of a scroll wrap. The present invention also relates to a heat exchange system that uses a scroll-type expander to replace pistons in a conventional reciprocating Stirling engine or refrigerator with a pair of scroll-type compressor and expander such that the heat exchange system may be used as a Stirling engine or refrigerator. The present invention also provides a steam engine, in which a steam turbine in the conventional steam engine (Rankine system) is replaced with a scroll-type expander such that the steam cycle has both a re-heating cycle and a regeneration cycle.
摘要:
This invention relates to a scavenging shroud mechanism for improving scavenging of a 2-stroke engine, and more particularly to a scavenging shroud mechanism for improving scavenging of a 2-stroke engine which is constructed such that a scavenging shroud mechanism is provided to a scavenging valve whereby compressed air sucked into an interior of a combustion chamber makes a tumble phenomenon along with cylinder wall surface and thereby pushes out already burned burnt gas and simultaneously is capable of efficiently feeding new air so that efficient reverse loop scavenging system is made. The scavenging shroud mechanism has a baffle 2, shroud guide notch 3 and a shroud neck 4, and a fixed supporting pin 6 and a supporting guide 5 provided on the inner side of the intake manifold 9. A shroud guide notch 3 is provided in the baffle 2 so as to permit the scavenging shroud mechanism 1 to up and down-ward movement but not right and left rotational movement.
摘要:
A flash memory device includes a semiconductor substrate, a gate insulating layer having a first width formed on the semiconductor substrate to trap carriers tunneled from the semiconductor substrate and a metal electrode on the gate insulating layer to receive a voltage required for tunneling. The metal electrode having a second width smaller than the first width. The flash memory device further includes a sidewall spacer surrounding a side surface of the metal electrode to prevent oxidation of the metal electrode.