High reliability leadfree solder alloys for harsh service conditions

    公开(公告)号:US11752579B2

    公开(公告)日:2023-09-12

    申请号:US16801556

    申请日:2020-02-26

    摘要: High reliability leadfree solder alloys for harsh service conditions are disclosed. In some embodiments, a solder alloy comprises 2.5-4.0 wt % Ag; 0.4-0.8 wt % Cu; 5.0-9.0 wt % Sb; 1.5-3.5 wt % Bi; 0.05-0.35 wt % Ni; and a remainder of Sn. In some embodiments, an apparatus comprises: a component comprising: a main ceramic body, and a side surface having disposed thereon an electrode and a thermal pad; a copper substrate; and a solder alloy electrically coupling the component and the copper substrate, wherein the solder alloy comprises: 2.5-4.0 wt % Ag; 0.4-0.8 wt % Cu; 5.0-9.0 wt % Sb; 1.5-3.5 wt % Bi; 0.05-0.35 wt % Ni; and a remainder of Sn. In some embodiments, an apparatus comprises: a light-emitting diode (LED) component; a Metal Core Printed Circuit Board (MCPCB); and a solder alloy electrically coupling the LED component and the MCPCB, wherein the solder alloy comprises: 2.5-4.0 wt % Ag; 0.4-0.8 wt % Cu; 5.0-9.0 wt % Sb; 1.5-3.5 wt % Bi; 0.05-0.35 wt % Ni; and a remainder of Sn.

    Fluxes effective in suppressing non-wet-open at BGA assembly

    公开(公告)号:US10756039B2

    公开(公告)日:2020-08-25

    申请号:US16172822

    申请日:2018-10-28

    摘要: The disclosure describes techniques for eliminating or reducing non-wet open (NWO) defect formation by using a low activity flux to prevent a solder paste from sticking to ball grid array (BGA) solder balls during reflow soldering. The low activity flux may be configured such that: i) it creates a barrier that prevents the solder paste from sticking to the solder balls of the BGA; and ii) it does not impede the formation of solder joints during reflow. In implementations, a solid coating of the low activity flux may be formed over balls of the BGA, and the BGA may then be bonded to a PCB during reflow. In implementations, the balls of a BGA may be dipped in a low-activity creamy or liquid flux prior to reflow. In some implementations, the flux may applied on a solder paste printed on pads of the PCB, followed by placement of a BGA.

    SNBI AND SNIN SOLDER ALLOYS
    6.
    发明申请

    公开(公告)号:US20200070287A1

    公开(公告)日:2020-03-05

    申请号:US16557587

    申请日:2019-08-30

    IPC分类号: B23K35/26 C22C13/02 C22C12/00

    摘要: Some implementations of the disclosure are directed to low melting temperature (e.g., liquidus temperature below 210° C.) SnBi or Snln solder alloys. A SnBi solder alloy may consist of 2 to 60 wt % Bi; optionally, one or more of: up to 16 wt % In, up to 4.5 wt % Ag, up to 2 wt % Cu, up to 12 wt % Sb, up to 2.5 wt % Zn, up to 1.5 wt % Ni, up to 1.5 wt % Co, up to 1.5 wt % Ge, up to 1.5 wt % P, and up to 1.5 wt % Mn; and a remainder of Sn. A Snln solder alloy may consist of: 8 to 20 wt % In; optionally, one or more of: up to 12 wt % Bi, up to 4 wt % Ag, up to 5 wt % Sb, up to 3 wt % Cu, up to 2.5 wt % Zn, up to 1.5 wt % Ni, up to 1.5 wt % Co, up to 1.5 wt % Ge, up to 1.5 wt % P, and up to 1.5 wt % Mn; and a remainder of Sn.

    Mixed alloy solder paste
    7.
    发明授权

    公开(公告)号:US10118260B2

    公开(公告)日:2018-11-06

    申请号:US14629139

    申请日:2015-02-23

    摘要: A solder paste consists of an amount of a first solder alloy powder between 60 wt % to 92 wt %; an amount of a second solder alloy powder greater than 0 wt % and less than 12 wt %; and a flux; wherein the first solder alloy powder comprises a first solder alloy that has a solidus temperature above 260° C.; and wherein the second solder alloy powder comprises a second solder alloy that has a solidus temperature that is less than 250° C.