-
公开(公告)号:US10770651B2
公开(公告)日:2020-09-08
申请号:US16463326
申请日:2016-12-30
Applicant: Intel Corporation
Inventor: MD Tofizur Rahman , Christopher J. Wiegand , Kaan Oguz , Daniel G. Ouellette , Brian Maertz , Kevin P. O'Brien , Mark L. Doczy , Brian S. Doyle , Oleg Golonzka , Tahir Ghani
Abstract: A material layer stack for a pSTTM device includes a fixed magnetic layer, a tunnel barrier disposed above the fixed magnetic layer and a free layer disposed on the tunnel barrier. The free layer further includes a stack of bilayers where an uppermost bilayer is capped by a magnetic layer including iron and where each of the bilayers in the free layer includes a non-magnetic layer such as Tungsten, Molybdenum disposed on the magnetic layer. In an embodiment, the non-magnetic layers have a combined thickness that is less than 15% of a combined thickness of the magnetic layers in the stack of bilayers. A stack of bilayers including non-magnetic layers in the free layer can reduce the saturation magnetization of the material layer stack for the pSTTM device and subsequently increase the perpendicular magnetic anisotropy.
-
公开(公告)号:US20180240970A1
公开(公告)日:2018-08-23
申请号:US15755437
申请日:2015-09-25
Applicant: Intel Corporation
Inventor: Kaan Oguz , Kevin P. O'Brien , Christopher J. Wiegand , MD Tofizur Rahman , Brian S. Doyle , Mark L. Doczy , Oleg Golonzka , Tahir Ghani , Justin S. Brockman
CPC classification number: H01L43/12 , G11C11/161 , H01F10/3272 , H01F10/3286 , H01F41/307 , H01L43/08 , H01L43/10
Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include a multi-layered filter stack disposed between a fixed magnetic layer and an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. In some embodiments, non-magnetic layers of the filter stack include at least one of Ta, Mo, Nb, W, or Hf. These transition metals may be in pure form or alloyed with other constituents.
-
公开(公告)号:US11437567B2
公开(公告)日:2022-09-06
申请号:US16348364
申请日:2016-12-28
Applicant: Intel Corporation
Inventor: Justin Brockman , Christopher Wiegand , MD Tofizur Rahman , Daniel Ouelette , Angeline Smith , Juan Alzate Vinasco , Charles Kuo , Mark Doczy , Kaan Oguz , Kevin O'Brien , Brian Doyle , Oleg Golonzka , Tahir Ghani
Abstract: An apparatus comprises a magnetic tunnel junction (MTJ) including a free magnetic layer, a fixed magnetic layer, and a tunnel barrier between the free and fixed layers, the tunnel barrier directly contacting a first side of the free layer, a capping layer contacting the second side of the free magnetic layer and boron absorption layer positioned a fixed distance above the capping layer.
-
公开(公告)号:US20180287050A1
公开(公告)日:2018-10-04
申请号:US15755488
申请日:2015-09-25
Applicant: Intel Corporation
Inventor: Prashanth P. Madras , MD Tofizur Rahman , Christopher J. Wiegand , Brian Maertz , Oleg Golonzka , Kevin P. O'Brien , Mark L. Doczy , Brian S. Doyle , Tahir Ghani , Kaan Oguz
Abstract: MTJ material stacks with a laterally strained free magnetic layer, STTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular pMTJ material stacks included free magnetic layers that are compressively strained laterally by a surrounding material, which increases coercive field strength for a more stable device. In some embodiments, a pMTJ material stack is encased in a compressive-stressed material. In some further embodiments, a pMTJ material stack is encased first in a dielectric shell, permitting a conductive material to be deposited over the shell as the compressive-stressed, strain-inducing material layer.
-
公开(公告)号:US20180248115A1
公开(公告)日:2018-08-30
申请号:US15755446
申请日:2015-09-25
Applicant: Intel Corporation
Inventor: Kaan Oguz , Kevin P. O'Brien , Christopher J. Wiegand , MD Tofizur Rahman , Brian S. Doyle , Mark L. Doczy , Oleg Golonzka , Tahir Ghani , Justin S. Brockman
CPC classification number: H01L43/08 , G11C11/161 , H01F10/30 , H01F10/3254 , H01F10/3272 , H01F10/3286 , H01F10/329 , H01F41/302 , H01F41/304 , H01L27/222 , H01L43/10 , H01L43/12
Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include one or more electrode interface material layers disposed between a an electrode metal, such as TiN, and a seed layer of an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. The electrode interface material layers may include either or both of a Ta material layer or CoFeB material layer. In some Ta embodiments, a Ru material layer may be deposited on a TiN electrode surface, followed by the Ta material layer. In some CoFeB embodiments, a CoFeB material layer may be deposited directly on a TiN electrode surface, or a Ta material layer may be deposited on the TiN electrode surface, followed by the CoFeB material layer.
-
公开(公告)号:US20190288190A1
公开(公告)日:2019-09-19
申请号:US16430201
申请日:2019-06-03
Applicant: Intel Corporation
Inventor: Kaan Oguz , Kevin P. O'Brien , Christopher J. Wiegand , MD Tofizur Rahman , Brian S. Doyle , Mark L. Doczy , Oleg Golonzka , Tahir Ghani , Justin S. Brockman
Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such pSTTM devices. In some embodiments, perpendicular MTJ material stacks include a multi-layered filter stack disposed between a fixed magnetic layer and an antiferromagnetic layer or synthetic antiferromagnetic (SAF) stack. In some embodiments, non-magnetic layers of the filter stack include at least one of Ta, Mo, Nb, W, or Hf. These transition metals may be in pure form or alloyed with other constituents.
-
7.
公开(公告)号:US10418415B2
公开(公告)日:2019-09-17
申请号:US16069165
申请日:2016-03-28
Applicant: Intel Corporation
Inventor: Christopher J. Wiegand , Oleg Golonzka , MD Tofizur Rahman , Brian S. Doyle , Mark L. Doczy , Kevin P. O'Brien , Kaan Oguz , Tahir Ghani , Satyarth Suri
IPC: H01L27/22 , H01L43/02 , H01L43/10 , H01L43/12 , G11C11/16 , H01F10/32 , H01F41/32 , H01L21/768 , H01L23/528 , H01L23/532 , H01L21/027 , H01L21/311 , H01L21/321 , H01L21/3213
Abstract: Approaches for an interconnect cladding process for integrating magnetic random access memory (MRAM) devices, and the resulting structures, are described. In an example, a memory structure includes an interconnect disposed in a trench of a dielectric layer above a substrate, the interconnect including a diffusion barrier layer disposed at a bottom of and along sidewalls of the trench to an uppermost surface of the dielectric layer, a conductive fill layer disposed on the diffusion barrier layer and recessed below the uppermost surface of the dielectric layer and an uppermost surface of the diffusion barrier layer, and a conductive capping layer disposed on the conductive fill layer and between sidewall portions of the diffusion barrier layer. A memory element is disposed on the conductive capping layer of the interconnect.
-
公开(公告)号:US20190221734A1
公开(公告)日:2019-07-18
申请号:US16327603
申请日:2016-09-30
Applicant: INTEL CORPORATION
Inventor: Kaan Oguz , Kevin P. O'Brien , Brian S. Doyle , Mark L. Doczy , Charles C. Kuo , Daniel G. Ouellette , Christopher J. Wiegand , MD Tofizur Rahman , Brian Maertz
CPC classification number: H01L43/08 , H01L27/228 , H01L43/10 , H01L43/12
Abstract: Systems, apparatus, and methods for magnetoresitive memory are described. An apparatus for magnetoresitive memory includes a fixed layer, a free layer, and a tunneling barrier between the fixed layer and the free layer. The free layer is a new alloy consisting of a composition of Cobalt (Co), Iron (Fe), and Boron (B) intermixed with a non-magnetic metal according to a ratio. A thin insert layer of CoFeB may optionally be added between the alloy and the tunneling barrier.
-
9.
公开(公告)号:US20180248114A1
公开(公告)日:2018-08-30
申请号:US15755444
申请日:2015-09-25
Applicant: Intel Corporation
Inventor: Kaan Oguz , Kevin P. O'Brien , Christopher J. Wiegand , MD Tofizur Rahman , Brian S. Doyle , Mark L. Doczy , Oleg Golonzka , Tahir Ghani , Justin S. Brockman
Abstract: MTJ material stacks, pSTTM devices employing such stacks, and computing platforms employing such STTM devices. In some embodiments, perpendicular MTJ material stacks with free magnetic layers are magnetically coupled through a metal material layer for improved stability and low damping. In some advantageous embodiments, layers of a free magnetic material stack are magnetically coupled through a coupling layer of a metal comprising at least molybdenum (Mo). The Mo may be in pure form or alloyed with other constituents.
-
10.
公开(公告)号:US10804460B2
公开(公告)日:2020-10-13
申请号:US16097801
申请日:2016-07-01
Applicant: MD Tofizur Rahman , Christopher J. Wiegand , Brian Maertz , Daniel G. Ouellette , Kaan Oguz , Brian S. Doyle , Mark L. Doczy , Daniel B. Bergstrom , Justin S. Brockman , Oleg Golonzka , Tahir Ghani , Intel Corporation
Inventor: MD Tofizur Rahman , Christopher J. Wiegand , Brian Maertz , Daniel G. Ouellette , Kevin P. O'Brien , Kaan Oguz , Brian S. Doyle , Mark L. Doczy , Daniel B. Bergstrom , Justin S. Brockman , Oleg Golonzka , Tahir Ghani
Abstract: Material layer stack structures to provide a magnetic tunnel junction (MTJ) having improved perpendicular magnetic anisotropy (PMA) characteristics. In an embodiment, a free magnetic layer of the material layer stack is disposed between a tunnel barrier layer and a cap layer of magnesium oxide (Mg). The free magnetic layer includes a Cobalt-Iron-Boron (CoFeB) body substantially comprised of a combination of Cobalt atoms, Iron atoms and Boron atoms. A first Boron mass fraction of the CoFeB body is equal to or more than 25% (e.g., equal to or more than 27%) in a first region which adjoins an interface of the free magnetic layer with the tunnel barrier layer. In another embodiment, the first Boron mass fraction is more than a second Boron mass fraction in a second region of the CoFeB body which adjoins an interface of the free magnetic layer with the cap layer.
-
-
-
-
-
-
-
-
-