Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
For example, a processor may be configured to generate compressed radar information by compressing radar values in a plurality of data bins of at least one radar processing dimension, the at least one radar processing dimension including a range dimension. For example, the processor may be configured to generate the compressed radar information by quantizing a plurality of normalized values corresponding to the radar values in the plurality of data bins. For example, a normalized value corresponding to a radar value in a data bin may be based on a normalization of the radar value with respect to a plurality of radar values in the data bin. For example, the processor may be configured to store the compressed radar information in a memory.
Abstract:
For example, an apparatus may include a radar processor to process radar receive (Rx) data, the radar Rx data based on radar signals received via a plurality of Rx antennas of a Multiple-Input-Multiple-Output (MIMO) radar antenna; and to generate radar information by applying an Amplitude Phase Estimation (APES) calculation to the radar Rx data.
Abstract:
For example, an apparatus may include a radar processor to process radar receive (Rx) data, the radar Rx data based on radar signals received via a plurality of Rx antennas of a Multiple-Input-Multiple-Output (MIMO) radar antenna; and to generate radar information by applying an Amplitude Phase Estimation (APES) calculation to the radar Rx data.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Some demonstrative aspects include radar apparatuses, devices, systems and methods. In one example, an apparatus may include a plurality of Transmit (Tx) antennas to transmit radar Tx signals, a plurality of Receive (Rx) antennas to receive radar Rx signals based on the Tx signals, and a processor to generate radar information based on the radar Rx signals. The apparatus may be implemented, for example, as part of a radar device, for example, as part of a vehicle including the radar device. In other aspects, the apparatus may include any other additional or alternative elements and/or may be implemented as part of any other device.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Some demonstrative aspects include radar apparatuses, devices, systems and methods. In one example, an apparatus may include a plurality of Transmit (Tx) antennas to transmit radar Tx signals, a plurality of Receive (Rx) antennas to receive radar Rx signals based on the Tx signals, and a processor to generate radar information based on the radar Rx signals. The apparatus may be implemented, for example, as part of a radar device, for example, as part of a vehicle including the radar device. In other aspects, the apparatus may include any other additional or alternative elements and/or may be implemented as part of any other device.
Abstract:
Logic for direct current (DC) estimation of a wireless communication packet. Logic may determine a first DC estimation based upon a first set of sequences in a preamble of the wireless communication packet. Logic may determine a second DC estimation based upon a second set of sequences in the preamble. Logic may select one of the DC estimations based upon a frequency-offset estimation. Logic may remove one of the DC estimations from the packet. Logic to null DC bins that result from a Fourier transform of the packet to mitigate transmitter DC bias. And logic to determine a correction for the packet based upon a difference between a predetermined guard interval value and a received guard interval value and to apply the correction to the packet.