Abstract:
Embodiments of present invention provide a method of forming a semiconductor structure. The method includes forming a semiconductor structure having a first metal layer and a plurality of dielectric layers on top of the first metal layer; creating one or more openings through the plurality of dielectric layers to expose the first metal layer underneath the plurality of dielectric layers; causing the one or more openings to expand downward into the first metal layer and expand horizontally into areas underneath the plurality of dielectric layers; applying a layer of lining material in lining sidewalls of the one or more openings inside the plurality of dielectric layers; and filling the expanded one or more openings with a conductive material.
Abstract:
Wafer to wafer alignment which includes a first semiconductor wafer and a second semiconductor wafer. The first and second semiconductor wafers have selectively-activated alignment arrays for aligning the first semiconductor wafer with the second semiconductor wafer. Each of the alignment arrays include an alignment structure which includes an antenna connected to a semiconductor device. The antenna in each of the alignment arrays is selectively activated to act as a charge source or as a charge sensing receptor. The alignment arrays are located in the kerf areas of the semiconductor wafers. The semiconductor wafers are aligned when the charge sources on one semiconductor wafer match with the charge sensing receptors on the other semiconductor wafer.
Abstract:
The present invention relates generally to semiconductor fabrication lithography and, more particularly, to a method and composition for reducing post-development defects and residues that may remain on a photoresist after development of the photoresist without causing substantial damage to the photoresist. The method may include rinsing the photoresist and the semiconductor device with ozonated acidified conductive water composed of a combination of ozone and a gaseous acid dissolved in deionized water.
Abstract:
Embodiments of present invention provide a method of forming a semiconductor structure. The method includes forming a semiconductor structure having a first metal layer and a plurality of dielectric layers on top of the first metal layer; creating one or more openings through the plurality of dielectric layers to expose the first metal layer underneath the plurality of dielectric layers; causing the one or more openings to expand downward into the first metal layer and expand horizontally into areas underneath the plurality of dielectric layers; applying a layer of lining material in lining sidewalls of the one or more openings inside the plurality of dielectric layers; and filling the expanded one or more openings with a conductive material.
Abstract:
A chemical solution including an aqueous solution, an oxidizing agent, and a pH stabilizer selected from quaternary ammonium salts and quaternary ammonium alkali can be employed to remove metallic materials in cavities for forming a semiconductor device. For example, metallic materials in gate cavities for forming a replacement gate structure can be removed by the chemical solution of the present disclosure with, or without, selectivity among multiple metallic materials such as work function materials. The chemical solution of the present disclosure provides different selectivity among metallic materials than known etchants in the art.
Abstract:
A method including depositing an alloying layer along a sidewall of an opening and in direct contact with a seed layer, the alloying layer includes a crystalline structure that cannot serve as a seed for plating a conductive material, exposing the opening to an electroplating solution including the conductive material, the conductive material is not present in the alloying layer, applying an electrical potential to a cathode causing the conductive material to deposit from the electroplating solution onto the cathode exposed at the bottom of the opening and causing the opening to fill with the conductive material, the cathode includes an exposed portion of the seed layer and excludes the alloying layer, and forming a first intermetallic compound along an intersection between the alloying layer and the conductive material, the first intermetallic compound is formed as a precipitate within a solid solution of the alloying layer and the conductive material.
Abstract:
According to one embodiment of the present invention, a method of plating a TSV hole in a substrate is provided. The TSV hole may include an open end terminating at a conductive pad, a stack of wiring levels, and a plurality of chip interconnects. The method of plating a TSV may include attaching a handler to the plurality of chip interconnects, the handler having a conductive layer in electrical contact with the plurality of chip interconnects; exposing a closed end of the TSV hole, including the conductive pad, to an electrolyte solution; and applying an electrical potential along an electrical path from the conductive layer to the conductive pad causing conductive material from the electrolyte solution to deposit on the conductive pad and within the TSV hole, the electrical path including the conductive layer, the plurality of chip interconnects, the stack of wiring levels and the conductive pad.
Abstract:
Cleaning solutions and processes for cleaning semiconductor devices or semiconductor tooling during manufacture thereof generally include contacting the semiconductor devices or semiconductor tooling with an acidic aqueous cleaning solution free of a fluorine containing compound, the acidic aqueous cleaning solution including at least one antioxidant and at least one non-oxidizing acid.
Abstract:
A structure formed in an opening having a substantially vertical sidewall defined by a non-metallic material and having a substantially horizontal bottom defined by a conductive pad, the structure including a diffusion barrier covering the sidewall and a fill composed of conductive material. The structure including a first intermetallic compound separating the diffusion barrier from the conductive material, the first intermetallic compound comprises an alloying material and the conductive material, and is mechanically bound to the conductive material, the alloying material is at least one of the materials selected from the group of chromium, tin, nickel, magnesium, cobalt, aluminum, manganese, titanium, zirconium, indium, palladium, and silver; and a first high friction interface located between the diffusion barrier and the first intermetallic compound and parallel to the sidewall of the opening, wherein the first high friction interface results in a mechanical bond between the diffusion barrier and the first intermetallic compound.
Abstract:
The present invention provides a stabilized fine textured metal microstructure that constitutes a durable activated surface usable for bonding a 3D stacked chip. A fine-grain layer that resists self anneal enables metal to metal bonding at moderate time and temperature and wider process flexibility.