摘要:
A method of fabricating a nonvolatile memory device with a three-dimensional structure includes alternately stacking first and second material layers in two or more layers on a semiconductor substrate, forming trenches penetrating the stacked first and second material layers by performing a first etching process, and removing the second material layers exposed in the trenches by performing a second etching process. The first and second material layers are formed of materials that have the same main component but have different impurity contents, respectively.
摘要:
A method of forming a pattern structure includes forming a thin film pattern on a substrate, the thin film pattern including depression portions with first bottom widths, forming a protection layer on the thin film pattern by implanting ions into the thin film pattern, and etching a lower portion of the thin film pattern selectively using the protection layer as a mask to increase the first bottom widths of the depression portions into second bottom widths.
摘要:
A method of forming a pattern structure includes forming a thin film pattern on a substrate, the thin film pattern including depression portions with first bottom widths, forming a protection layer on the thin film pattern by implanting ions into the thin film pattern, and etching a lower portion of the thin film pattern selectively using the protection layer as a mask to increase the first bottom widths of the depression portions into second bottom widths.
摘要:
A method of fabricating a nonvolatile memory device with a three-dimensional structure includes alternately stacking first and second material layers in two or more layers on a semiconductor substrate, forming trenches penetrating the stacked first and second material layers by performing a first etching process, and removing the second material layers exposed in the trenches by performing a second etching process. The first and second material layers are formed of materials that have the same main component but have different impurity contents, respectively.
摘要:
The inventive concept provides a wafer test method and a wafer test apparatus. The wafer test method can recognize the amount of residuals generated in a sidewall of the metal-containing layer pattern and the extent of corrosion of a sidewall of the metal-containing layer pattern using the measured electric resistance by supplying an electrolyte so that the electrolyte is in contact with a portion of the metal-containing layer pattern in a predetermined chip region and measuring an electric resistance between a first electrode which is electrically in contact with the other portion of the metal-containing layer pattern and a second electrode which is in contact with the electrolyte in the predetermined region. Thus, a wafer test method and a wafer test apparatus can be embodied by an in-line method without dividing a wafer into each chip.
摘要:
Methods and apparatus for creating and controlling transient cavitation are disclosed. An example method includes selecting a range of bubble sizes to be created in a liquid and selecting characteristics for an acoustic field to be applied to the liquid. The method further includes creating gas bubbles of the selected range of bubble sizes in the liquid, creating an acoustic field with the selected characteristics and subjecting the liquid to the acoustic field. In the example method, at least one of the range of bubble sizes and the characteristics of the acoustic field is selected in correspondence with the other so as to control transient cavitation in the liquid for the selected range of bubble sizes. Particularly, the methods and apparatus may be used for the cleaning of a surface, such as a semiconductor substrate.
摘要:
The invention relates to a method for creating transient cavitation comprising the steps of creating gas bubbles having a range of bubble sizes in a liquid, creating an acoustic field and subjecting the liquid to the acoustic field, characterized in that the range of bubble sizes and/or the characteristics of the acoustic field are selected to tune them to each other, thereby controlling transient cavitation in the selected range of bubble sizes. It also relates to an apparatus suitable for performing the method according to the invention.
摘要:
The present inventive concepts provide metal etchant compositions and methods of fabricating a semiconductor device using the same. The metal etchant composition includes an organic peroxide in a range of about 0.1 wt % to about 20 wt %, an organic acid in a range of about 0.1 wt % to about 70 wt %, and an alcohol-based solvent in a range of about 10 wt % to about 99.8 wt %. The metal etchant composition may be used in an anhydrous system.
摘要:
Substrate treatment systems are provided. The substrate treatment systems may include a treating device configured to treat a substrate with a supercritical fluid, and a supplying device configured to supply the supercritical fluid to the treating device. The treating device may include a supercritical process zone in which the substrate is treated with the supercritical fluid, and a pre-supercritical process zone in which the supercritical fluid is expanded and then provided into the supercritical process zone to create a supercritical state in the supercritical process zone.
摘要:
The inventive concept provides a wafer test method and a wafer test apparatus. The wafer test method can recognize the amount of residuals generated in a sidewall of the metal-containing layer pattern and the extent of corrosion of a sidewall of the metal-containing layer pattern using the measured electric resistance by supplying an electrolyte so that the electrolyte is in contact with a portion of the metal-containing layer pattern in a predetermined chip region and measuring an electric resistance between a first electrode which is electrically in contact with the other portion of the metal-containing layer pattern and a second electrode which is in contact with the electrolyte in the predetermined region. Thus, a wafer test method and a wafer test apparatus can be embodied by an in-line method without dividing a wafer into each chip.