Interface-less contacts to source/drain regions and gate electrode over active portion of device

    公开(公告)号:US11139385B2

    公开(公告)日:2021-10-05

    申请号:US15982507

    申请日:2018-05-17

    摘要: A method of providing contact surfaces that includes forming a first mask having an opening to a perimeter of a gate electrode, the first mask having a first protecting portion centrally positioned over the gate electrode within the perimeter, and a second protecting portion of the mask is positioned over metal semiconductor alloy surfaces of source and drain contact surfaces; and recessing exposed portions of metal semiconductor alloy and the gate electrode with an etch. In a following step, the method continues with filling the openings provided by recessing the gate perimeter of the gate electrode, recessing the metal semiconductor alloy adjacent to the gate structure, and the recessed gate electrode adjacent to the metal semiconductor alloy surface of the source and drain contact surfaces with a protecting dielectric material.

    Fin field-effect transistor for input/output device integrated with nanosheet field-effect transistor

    公开(公告)号:US10522636B2

    公开(公告)日:2019-12-31

    申请号:US16261847

    申请日:2019-01-30

    摘要: A method of forming a semiconductor structure includes forming a nanosheet stack disposed over a first portion of a substrate and a fin channel material disposed over a second portion of the substrate, patterning the nanosheet stack disposed over the first portion of the substrate to form two or more nanosheet channels for at least one nanosheet field-effect transistor, patterning the fin channel material disposed over the second portion of the substrate to form one or more fins for at least one fin field-effect transistor, forming a first dielectric layer surrounding the nanosheet channels and the one or more fins, patterning a mask layer over the one or more fins, removing the first dielectric layer surrounding the nanosheet channels, removing the mask layer, forming a second dielectric layer surrounding the nanosheet channels and over the first dielectric layer surrounding the one or more fins, and forming a gate conductive layer over the second dielectric layer.

    Electrostatic discharge protection using vertical fin CMOS technology

    公开(公告)号:US10276558B1

    公开(公告)日:2019-04-30

    申请号:US15797119

    申请日:2017-10-30

    摘要: Embodiments include a method and resulting structures for vertical fin CMOS technology for electrostatic discharge protection. In a non-limiting embodiment, forming a first set of semiconductor fins vertically extending from a substrate, and forming a second set of semiconductor fins vertically extending from the substrate, the distance between the first set of fins and the second set of fins defines a length of a junction. Embodiments also include forming a first epitaxy layer on the substrate, and forming a second epitaxy layer atop a portion of the first epitaxy layer, wherein a PN junction is formed between the first epitaxy layer and the second epitaxy layer, wherein a length of the PN junction is defined by the first set of semiconductor fins and the second semiconductor fins. Embodiments include forming a first metal contact atop the first epitaxy layer, and forming a second metal contact atop the second epitaxy layer.

    Silicidation of bottom source/drain sheet using pinch-off sacrificial spacer process

    公开(公告)号:US10211316B2

    公开(公告)日:2019-02-19

    申请号:US15716690

    申请日:2017-09-27

    摘要: A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes at least a substrate, a first source/drain layer, and a plurality of fins each disposed on and in contact with the first source/drain layer. Silicide regions are disposed within a portion of the first source/drain layer. A gate structure is in contact with the plurality of fins, and a second source/drain layer is disposed on the gate structure. The method includes forming silicide in a portion of a first source/drain layer. A first spacer layer is formed in contact with at least the silicide, the first source/drain layer and the plurality of fins. A gate structure is formed in contact with the plurality of fins and the first spacer layer. A second spacer layer is formed in contact with the gate structure and the plurality of fins.