摘要:
An improved method for producing optoelectronic devices such as light emitting diodes or laser diodes is provided. Light emitting diodes or laser diodes are provided with improved light extraction. Epitaxial layers including a light emitting p-n junction are deposited on a substrate, and separations are cut through the epitaxial layers to provide a structure including a plurality of individual dies on the substrate. The structure is mounted on a submount and the substrate is removed. An index matching material is then attached to improve light extraction from the optoelectronic device.
摘要:
A light emitting diode (10) has a backside and a front-side with at least one n-type electrode (14) and at least one p-type electrode (12) disposed thereon defining a minimum electrodes separation (delectrodes). A bonding pad layer (50) includes at least one n-type bonding pad (64) and at least one p-type bonding pad (62) defining a minimum bonding pads separation (dpads) that is larger than the minimum electrodes separation (delectrodes). At least one fanning layer (30) interposed between the front-side of the light emitting diode (10) and the bonding pad layer (50) includes a plurality of electrically conductive paths passing through vias (34, 54) of a dielectric layer (32, 52) to provide electrical communication between the at least one n-type electrode (14) and the at least one n-type bonding pad (64) and between the at least one p-type electrode (12) and the at least one p-type bonding pad (62).
摘要:
A light emitting diode (10) has a backside and a front-side with at least one n-type electrode (14) and at least one p-type electrode (12) disposed thereon defining a minimum electrodes separation (delectrodes). A bonding pad layer (50) includes at least one n-type bonding pad (64) and at least one p-type bonding pad (62) defining a minimum bonding pads separation (dpads) that is larger than the minimum electrodes separation (delectrodes). At least one fanning layer (30) interposed between the front-side of the light emitting diode (10) and the bonding pad layer (50) includes a plurality of electrically conductive paths passing through vias (34, 54) of a dielectric layer (32, 52) to provide electrical communication between the at least one n-type electrode (14) and the at least one n-type bonding pad (64) and between the at least one p-type electrode (12) and the at least one p-type bonding pad (62).
摘要:
A light-emitting microelectronic package includes a light-emitting diode (110) having a first region (114) of a first conductivity type, a second region (116) of a second conductivity type, and a light-emitting p-n junction (118) between the first and second regions. The light-emitting diode defines a lower contact surface (120) and a mesa (122) projecting upwardly from the lower contact surface. The first region (114) of a first conductivity type is disposed in the mesa (122) and defines a top surface of the mesa, and the second region (116) of a second conductivity type defines the lower contact surface that substantially surrounds the mesa (122). The mesa includes at least one sidewall (130) extending between the top surface (124) of the mesa and the lower contact surface (120), the at least one sidewall (130) having a roughened surface for optimizing light extraction from the package.
摘要:
Light emitting diodes are provided with electrode and pad structures that facilitate current spreading and heat sinking. A light emitting diode may be formed as a die with a stacked structure having a first region and a mesa projecting from a surface of the first region. A first electrode may substantially cover the mesa and have a plurality of pads disposed thereon maximizing a contact area in relation to the first electrode. A second electrode may be disposed as a trace on the surface of the first region, the trace having a spiral, segmented/interdigitated, loop or pattern. Optionally, the trace includes corner spikes projecting outwardly toward edges of the first electrode.
摘要:
An LED device (90) includes: an epitaxial structure (100) having a plurality of layers of semiconductor material and forming an active light-generating region (120) which generates light in response to electrical power being supplied to the LED device (90); and, a substrate (200) that is substantially transparent in a wavelength range corresponding to the light generated by the active light-generating region (120). The substrate has first and second opposing end faces (202, 206) and a plurality of side walls (210) extending therebetween, including a first side wall having a first portion thereof that defines a first surface (212, 214, 216, 218) which is not substantially normal to the first face (202) of the substrate (200). The epitaxial structure (100) is disposed on the first face (202) of the substrate (200).
摘要:
A light emitting device (A) includes a semiconductor die (100). The semiconductor die includes: an epitaxial structure (120) arranged on a substrate (160), the epitaxial structure forming an active light generating region (140) between a first layer (120n) on a first side of the active region and having a first conductivity type, and a second layer (120p) on a second side of the active region and having a second conductivity type, the second side of the active region being opposite the first side of the active region and the second conductivity type being different that the first conductivity type; a first contact (180n) in operative electrical communication with the active region via the first layer in the epitaxial structure, the first contact being arranged on a side of the epitaxial structure opposite the substrate; a second contact (180p) in operative electrical communication with the active region via the second layer in the epitaxial structure, the second contact being arranged on a side of the epitaxial structure opposite the substrate; a first contact trace corresponding to the first contact and defined at a surface thereof distal from the substrate, the first trace including at least one area designated for bonding (320n); and, a second contact trace corresponding the second contact and defined at a surface thereof distal from the substrate, the second trace including at least one area (320p) designated for bonding. Suitably, the first contact trace is substantially enclosed within the second contact trace.
摘要:
A contact for n-type III-V semiconductor such as GaN and related nitride-based semiconductors is formed by depositing Al,Ti,Pt and Au in that order on the n-type semiconductor and annealing the resulting stack, desirably at about 400-600° C. for about 1-10 minutes. The resulting contact provides a low-resistance, ohmic contact to the semiconductor and excellent bonding to gold leads.
摘要:
A sapphire wafer having a thickness greater than 125 microns and having devices disposed thereon is laser scribed to form a grid array pattern of laser scribe lines laser scribed into the sapphire wafer. The sapphire wafer is separated along the laser scribe lines to separate a plurality of device dice defined by the grid array pattern of laser scribe lines. Each device die includes (i) a device and (ii) a portion of the sapphire wafer having the thickness greater than 125 microns. In some embodiments, a GaN LED device die includes a GaN based LED device, and a sapphire substrate supporting the GaN based LED device. The sapphire substrate has: (i) a thickness greater than 125 microns effective for increased light extraction due to a lower critical angle for total internal reflection; and (ii) sides generated by laser scribing.
摘要:
A light emitting semiconductor device die (10, 110, 210, 310) includes an electrically insulating substrate (12, 112). First and second spatially separated electrodes (60, 62, 260, 262, 360, 362) are disposed on the electrically insulating substrate. The first and second electrodes define an electrical current flow direction directed from the first electrode to the second electrode. A plurality of light emitting diode mesas (30, 130, 130′, 230, 330) are disposed on the substrate between the first and second spatially separated electrodes. Electrical series interconnections (50, 150, 250, 350) are disposed on the substrate between neighboring light emitting diode mesas. Each series interconnection carries electrical current flow between the neighboring mesas in the electrical current flow direction.