摘要:
A method and device for emitting electromagnetic radiation at high power using nonpolar or semipolar gallium containing substrates such as GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, is provided. In various embodiments, the laser device includes plural laser emitters emitting green or blue laser light, integrated a substrate.
摘要:
Optical devices such as LEDs and lasers are discloses. The devices include a non-polar gallium nitride substrate member having an off-axis non-polar oriented crystalline surface plane. The off-axis non-polar oriented crystalline surface plane can be up to about −0.6 degrees in a c-plane direction and up to about −20 degrees in a c-plane direction in certain embodiments. In certain embodiments, a gallium nitride containing epitaxial layer is formed overlying the off-axis non-polar oriented crystalline surface plane. In certain embodiments, devices include a surface region overlying the gallium nitride epitaxial layer that is substantially free of hillocks.
摘要:
A laser dazzler device and method. More specifically, embodiments of the present invention provide laser dazzling devices power by one or more green laser diodes characterized by a wavelength of about 500 nm to 540 nm. In various embodiments, laser dazzling devices according to the present invention include non-polar and/or semi-polar green laser diodes. In a specific embodiment, a single laser dazzling device includes a plurality of green laser diodes. There are other embodiments as well.
摘要:
A system and method for providing laser diodes with broad spectrum is described. GaN-based laser diodes with broad or multi-peaked spectral output operating are obtained in various configurations by having a single laser diode device generating multiple-peak spectral outputs, operate in superluminescene mode, or by use of an RF source and/or a feedback signal. In some other embodiments, multi-peak outputs are achieved by having multiple laser devices output different lasers at different wavelengths.
摘要:
Method and devices for emitting electromagnetic radiation at high power using nonpolar or semipolar gallium containing substrates such as GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, are provided. The laser devices include multiple laser emitters integrated onto a substrate (in a module), which emit green or blue laser radiation.
摘要:
The present invention is directed to display technologies. More specifically, various embodiments of the present invention provide projection display systems where one or more laser diodes are used as light source for illustrating images. In one set of embodiments, the present invention provides projector systems that utilize blue and/or green laser fabricated using gallium nitride containing material. In another set of embodiments, the present invention provides projection systems having digital lighting processing engines illuminated by blue and/or green laser devices. In one embodiment, the present invention provides a 3D display system. There are other embodiments as well.
摘要:
A multicolored LED device made of a semipolar material having different indium containing regions provided on different spatial features of GaN material. Other materials such as non-polar materials can also be used.
摘要:
An optical device includes a gallium nitride substrate member having an m-plane nonpolar crystalline surface region characterized by an orientation of about −1 degree towards (000-1) and less than about +/−0.3 degrees towards (11-20). The device also has a laser stripe region formed overlying a portion of the m-plane nonpolar crystalline orientation surface region. In a preferred embodiment, the laser stripe region is characterized by a cavity orientation that is substantially parallel to the c-direction, the laser stripe region having a first end and a second end. The device includes a first cleaved c-face facet, which is coated, provided on the first end of the laser stripe region. The device also has a second cleaved c-face facet, which is exposed, provided on the second end of the laser stripe region.
摘要:
A method for forming optical devices. The method includes providing a gallium nitride substrate member having a crystalline surface region and a backside region. The method also includes subjecting the backside region to a laser scribing process to form a plurality of scribe regions on the backside region and forming a metallization material overlying the backside region including the plurality of scribe regions. The method removes at least one optical device using at least one of the scribe regions.