摘要:
Methods and structures are provided for formation of devices, e.g., solar cells, on substrates including, e.g., lattice-mismatched materials, by the use of aspect ratio trapping (ART) and epitaxial layer overgrowth (ELO). In general, in a first aspect, embodiments of the invention may include a method of forming a structure. The method includes forming a first opening in a masking layer disposed over a substrate that includes a first semiconductor material. A first layer, which includes a second semi-conductor material lattice-mismatched to the first semiconductor material, is formed within the first opening. The first layer has a thickness sufficient to extend above a top surface of the masking layer. A second layer, which includes the second semiconductor material, is formed on the first layer and over at least a portion of the masking layer. A vertical growth rate of the first layer is greater than a lateral growth rate of the first layer and a lateral growth rate of the second layer is greater than a vertical growth rate of the second layer.
摘要:
Methods and structures are provided for formation of devices on substrates including, e.g., lattice-mismatched materials, by the use of aspect ratio trapping and epitaxial layer overgrowth. A method includes forming an opening in a masking layer disposed over a substrate that includes a first semiconductor material. A first layer, which includes a second semiconductor material lattice-mismatched to the first semiconductor material, is formed within the opening. The first layer has a thickness sufficient to extend above a top surface of the masking layer. A second layer, which includes the second semiconductor material, is formed on the first layer and over at least a portion of the masking layer. A vertical growth rate of the first layer is greater than a lateral growth rate of the first layer and a lateral growth rate of the second layer is greater than a vertical growth rate of the second layer.
摘要:
Some aspects for the invention include a method and a structure including a light-emitting device disposed over a second crystalline semiconductor material formed over a semiconductor substrate comprising a first crystalline material.
摘要:
A device, system, and method for solar cell construction and bonding/layer transfer are disclosed herein. An exemplary structure of solar cell construction involves providing a monocrystalline donor absorber layer. A conductive bonding layer bonds the absorber layer to a carrier substrate. A porous layer or ion implant may be used to form the donor absorber layer.
摘要:
Methods and structures are provided for formation of devices, e.g., solar cells, on substrates including, e.g., lattice-mismatched materials, by the use of aspect ratio trapping (ART) and epitaxial layer overgrowth (ELO). In general, in a first aspect, embodiments of the invention may include a method of forming a structure. The method includes forming a first opening in a masking layer disposed over a substrate that includes a first semiconductor material. A first layer, which includes a second semi-conductor material lattice-mismatched to the first semiconductor material, is formed within the first opening. The first layer has a thickness sufficient to extend above a top surface of the masking layer. A second layer, which includes the second semiconductor material, is formed on the first layer and over at least a portion of the masking layer. A vertical growth rate of the first layer is greater than a lateral growth rate of the first layer and a lateral growth rate of the second layer is greater than a vertical growth rate of the second layer.
摘要:
A backside illuminated multi junction solar cell module includes a substrate, multiple multi junction solar cells, and a cell interconnection that provides a series connection between at least two of the multi junction solar cells. The substrate may include a material that is substantially transparent to solar radiation. Each multi junction solar cell includes a first active cell, grown over the substrate, for absorbing a first portion of the solar radiation for conversion into electrical energy and a second active cell, grown over the first active cell, for absorbing a second portion of the solar radiation for conversion into electrical energy. At least one of the first and second active cells includes a nitride.
摘要:
A backside illuminated multi-junction solar cell module includes a substrate, multiple multi-junction solar cells, and a cell interconnection that provides a series connection between at least two of the multi-junction solar cells. The substrate may include a material that is substantially transparent to solar radiation. Each multi-junction solar cell includes a first active cell, grown over the substrate, for absorbing a first portion of the solar radiation for conversion into electrical energy and a second active cell, grown over the first active cell, for absorbing a second portion of the solar radiation for conversion into electrical energy. At least one of the first and second active cells includes a nitride.
摘要:
An intelligent terminal that allows for replacement of a wireless communication device by a user is disclosed, which comprises an intelligent terminal body and the wireless communication device having a SIM card. The wireless communication device is detachably inserted in a slot of the intelligent terminal body and connected to the intelligent terminal body via an interface, and the outer surface of the wireless communication device matches with the outer surface of the intelligent terminal body, such that the wireless network accessing function of the ultra-thin intelligent terminal is ensured even when no WiFi or 4G network resources are available. Meanwhile, this intelligent terminal can prevent the wireless network accessing device from being subjected to external impact and the consequent damage on the interface. Moreover, the detachable wireless communication device also makes it convenient for the user to choose different kinds of wireless network accessing devices freely.
摘要:
Structures including crystalline material disposed in openings defined in a non-crystalline mask layer disposed over a substrate. A photovoltaic cell may be disposed above the crystalline material.
摘要:
A method of forming a semiconductor structure includes forming an opening in a dielectric layer, forming a recess in an exposed part of a substrate, and forming a lattice-mismatched crystalline semiconductor material in the recess and opening.