摘要:
A method for manufacturing a component having a through-connection. The method includes providing a semiconductor substrate, forming a recess in the semiconductor substrate, and introducing into the recess a pourable starting material which has a metal. The method furthermore includes carrying out a heating process, an electrically conductive structure forming the through-connection being developed from the pourable starting material.
摘要:
A method for producing a component having a semiconductor substrate with through-hole plating is provided, the through-plating being surrounded by a recess, and the semiconductor substrate having a first layer on one side, which covers the recess on the first side. The semiconductor substrate has a second layer on a second side, which covers the recess on the second side, and the through-hole plating is surrounded by a ring structure which is produced from the semiconductor substrate. The recess surrounding the ring structure is produced in the same process step or at the same time as the recess for the through-hole plating.
摘要:
Measures are provided for stress decoupling between a semiconductor component and its mounting support, these measures being implementable very easily, inexpensively and in a space-saving manner, regardless of the substrate thickness of the component, and not being limited to soldered connections but instead also being usable in conjunction with other mounting and joining techniques. These measures relate to components, which include at least one electrical and/or micromechanical functionality and at least one wiring level, which is formed in a layer structure on a main surface of the component substrate, at least one mounting surface being implemented in the wiring level to establish a mechanical and/or electrical connection of the component to a support. The at least one mounting surface is spring mounted and is separated from the layer structure in at least some areas for this purpose.
摘要:
A component system includes at least one MEMS element, a cap for a micromechanical structure of the MEMS element, and at least one ASIC substrate. The micromechanical structure of the MEMS element is implemented in the functional layer of an SOI wafer. The MEMS element is mounted face down, with the structured functional layer on the ASIC substrate, and the cap is implemented in the substrate of the SOI wafer. The ASIC substrate includes a starting substrate provided with a layered structure on both sides. At least one circuit level is implemented in each case both in the MEMS-side layered structure and in the rear-side layered structure of the ASIC substrate. In the ASIC substrate, at least one ASIC through contact is implemented which electrically contacts at least one circuit level of the rear-side layered structure and/or at least one circuit level of the MEMS-side layered structure.
摘要:
In an ASIC element, vias are integrated into the CMOS processing of an ASIC substrate. The ASIC element includes an active front side in which the circuit functions are implemented. The at least one via is intended to establish an electrical connection between the active front side and the rear side of the element. The front side of the via is defined by at least one front-side trench which is completely filled, and the rear side is defined by at least one rear-side trench which is not completely filled. The rear-side trench opens into the filled front-side trench.
摘要:
A method for producing a metal structure in a semiconductor substrate includes: producing an opening in the rear side of the semiconductor substrate in the area of the metal structure to be produced, which extends to the front side layer structure; filling the opening at least partially with a metal so that a metal structure is created which extends from the rear side of the semiconductor substrate to the front side layer structure; masking the rear side of the semiconductor substrate for a trench process for exposing the metal structure in such a way that the trench mask includes a lattice structure in an area adjacent to the metal structure; producing an isolation trench adjacent to the metal structure, the metal structure acting as a lateral etch stop and the lattice structure being laterally undercut in the trench mask; and applying a sealing layer to the mask.
摘要:
A hybrid integrated component includes: at least one ASIC element having integrated circuit elements and a back-end stack; an MEMS element having a micromechanical structure, which extends over the entire thickness of the MEMS substrate; and a cap wafer. The hybrid integrated component is provided with an additional micromechanical function. The MEMS element is mounted on the ASIC element, so that a gap exists between the micromechanical structure and the back-end stack of the ASIC element. The cap wafer is mounted above the micromechanical structure of the MEMS element. A pressure-sensitive diaphragm structure having at least one deflectable electrode of a capacitor system is implemented in the back-end stack of the ASIC element, which diaphragm structure spans a pressure connection in the rear side of the ASIC element.
摘要:
A hybridly integrated component includes an ASIC element having a processed front side, a first MEMS element having a micromechanical structure extending over the entire thickness of the first MEMS substrate, and a first cap wafer mounted over the micromechanical structure of the first MEMS element. At least one structural element of the micromechanical structure of the first MEMS element is deflectable, and the first MEMS element is mounted on the processed front side of the ASIC element such that a gap exists between the micromechanical structure and the ASIC element. A second MEMS element is mounted on the rear side of the ASIC element. The micromechanical structure of the second MEMS element extends over the entire thickness of the second MEMS substrate and includes at least one deflectable structural element.
摘要:
A micromechanical component for a capacitive sensor device includes first and second electrodes. The first electrode is at least partially formed from a first semiconductor layer and/or metal layer, and at least one inner side of the second electrode facing the first electrode is formed from a second semiconductor layer and/or metal layer. A cavity is between the first and second electrodes. Continuous recesses are structured into the inner side of the second electrode and sealed off with a closure layer. At least one reinforcing layer of the second electrode and at least one contact element which is electrically connected to the first electrode, to the layer of the second electrode which forms the inner side, to at least one printed conductor, and/or to a conductive substrate area, are formed from at least one epi-polysilicon layer. Also described is a micromechanical component manufacturing method for a capacitive sensor device.
摘要:
A vertically integrated hybrid component is implemented in the form of a wafer level package including: at least two element substrates assembled one above the other; a molded upper sealing layer made of an electrically insulating casting; and an external electrical contacting of the component being implemented on the top side via at least one contact stamp which is embedded in the sealing layer so that (i) its lower end is connected to a wiring level of an element substrate and (ii) its upper end is exposed in the surface of the sealing layer.