摘要:
A wirebond-less packaged semiconductor device includes a plurality of I/O contacts, at least one semiconductor die, the semiconductor die having a bottom major surface and a top major surface, the top major surface having at least two electrically isolated electrodes, and a conductive clip system disposed over the top major surface, the clip system comprising at least two electrically isolated sections coupling the electrodes to respective I/O contacts.
摘要:
A semiconductor die package includes: an assembly including a semiconductor die, a clip structure attached to an upper surface of the semiconductor die, and a heat sink attached to an upper surface of the clip structure; and a molding material partially encapsulating the assembly, wherein an upper surface of the heat sink is exposed through the molding material.
摘要:
A semiconductor die package includes: an assembly including a semiconductor die, a clip structure attached to an upper surface of the semiconductor die, and a heat sink attached to an upper surface of the clip structure; and a molding material partially encapsulating the assembly, wherein an upper surface of the heat sink is exposed through the molding material.
摘要:
A method and structure for a dual heat dissipating semiconductor device. A method includes attaching a drain region on a first side of a die, such as a power metal oxide semiconductor field effect transistor (MOSFET) to a first leadframe subassembly. A source region and a gate region on a second side of the die are attached to a second leadframe subassembly. The first leadframe subassembly is attached to a third leadframe subassembly, then the device is encapsulated or otherwise packaged. An exposed portion of the first leadframe subassembly provides an external heat sink for the drain region, and the second leadframe subassembly provides external heat sinks for the source region and the gate region, as well as output leads for the gate region. The third leadframe subassembly provides output leads for the drain region.
摘要:
A packaged switching device for power applications includes at least one pair of power MOSFET transistor dies connected between upper and lower power source rail leads, a high side one of the pair of MOSFET transistor dies being connected to the upper power source rail lead and a low side one of the pair of MOSFET transistor dies being connected to the lower power source rail lead. At least one of the MOSFET transistor dies is configured for vertical current flow therethrough and has a source electrode at a backside thereof.
摘要:
A power FET (100) comprising a leadframe including a pad (110), a first lead (111), and a second lead (112); a first metal clip (150) including a plate (150a), an extension (150b) and a ridge (150c), the plate and extension spaced from the leadframe pad and the ridge connected to the pad; a vertically assembled stack of FET chips in the space between the plate and the pad, the stack including a first n-channel FET chip (120) having the drain terminal on one surface and the source and gate terminals on the opposite surface, the drain terminal attached to the pad, the source terminal attached to a second clip (140) tied to the first lead; and a second n-channel FET chip (130) having the source terminal on one surface and the drain and gate terminals on the opposite surface, the source terminal attached to the second clip, its drain terminal attached to the first clip; wherein the drain-source on-resistance of the FET stack is smaller than the on-resistance of the first FET chip and of the second FET chip.
摘要:
A method for maintaining non-porous nickel layer at a nickel/passivation interface of a semiconductor device in a nickel/gold electroless plating process. The method can include sequentially electroless plating of each of the nickel layer and gold layer on the device layer to pre-determined thicknesses to prevent corrosion of the nickel layer from reaching the device layer during the electroless gold plating process.
摘要:
A method and structure for a dual heat dissipating semiconductor device. A method includes attaching a drain region on a first side of a die, such as a power metal oxide semiconductor field effect transistor (MOSFET) to a first leadframe subassembly. A source region and a gate region on a second side of the die are attached to a second leadframe subassembly. The first leadframe subassembly is attached to a third leadframe subassembly, then the device is encapsulated or otherwise packaged. An exposed portion of the first leadframe subassembly provides an external heat sink for the drain region, and the second leadframe subassembly provides external heat sinks for the source region and the gate region, as well as output leads for the gate region. The third leadframe subassembly provides output leads for the drain region.
摘要:
A method and resulting device for maintaining non-porous nickel layer at a nickel/passivation interface of a semiconductor device in a nickel/gold electroless plating process. The method can include determining a thickness of a gold layer of the semiconductor device; determining an electroless plating rate and plating time of the gold layer to reach the determined thickness; determining a thickness of nickel under the gold layer to maintain the non-porous nickel layer at the nickel/passivation interface at a termination of an electroless gold plating process; and following the determinations, sequentially electroless plating of each of the nickel layer and gold layer on the device layer to the determined thicknesses.
摘要:
An integrated circuit device having a flexible leadframe, and techniques for fabricating the flexible leadframe and integrated circuit device, are provided. In one aspect of the invention, an integrated circuit device comprises a heat spreader having a top surface and a bottom surface. At least one integrated circuit die is attached to the top surface of the heat spreader. A flexible leadframe is also attached to the top surface of the heat spreader. The flexible leadframe has one or more flexible layers, including at least one flexible insulating layer. A plurality of electrically conductive traces are defined on the at least one flexible insulating layer.