摘要:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1−z))O3 [wherein 0.9
摘要翻译:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, (B)或由通式(2)表示的羧酸(B))的化合物(A-1-z))O 3 [其中0.9
摘要:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
摘要翻译:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B),通式(2)表示的化合物(其中0.9
摘要:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
摘要翻译:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B),通式(2)表示的化合物(其中0.9
摘要:
A dielectric thin film and a method of manufacturing the same, wherein the manufacture of a dielectric thin film having a composition represented by Ba1-xSrxTiyO3 (wherein 0≦x≦1 and 0.9≦y≦1.1) includes applying a precursor to the thin film to a substrate and performing drying, and subsequently performing calcination by raising the temperature of the dried thin film at a rate of not more than 30° C./minute, thereby forming a dielectric thin film having an average primary particle size of not less than 70 nm, for which no cracks with a continuous linear length of 1.5 μm or greater exist at the surface of the thin film.
摘要:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1−z))O3 [wherein 0.9
摘要翻译:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, (B)或由通式(2)表示的羧酸(B),其中0.9
摘要:
A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal daces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 5 nm to 30 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer to be in the (110) plane.
摘要:
Coated film is removed at an outer peripheral edge of a substrate before heat-treating in CSD method by spraying or dropping liquid for removing CSD coated film including water and organic solvent mixed in a weight ratio of 50:50 to 0:100, in which the organic solvent is one or more selected from the group consisting of β-diketones, β-ketoesters, polyhydric alcohol, carboxylic acids, alkanolamines, α-hydroxy carboxylic acid, α-hydroxy carbonyl derivatives, and hydrazone derivatives.
摘要:
A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal faces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 35 nm to 150 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer in the (100) plane.
摘要:
A thin film capacitor is characterized by forming a lower electrode, coating a composition onto the lower electrode without applying an annealing process having a temperature of greater than 300° C., drying at a predetermined temperature within a range from ambient temperature to 500° C., and calcining at a predetermined temperature within a range of 500 to 800° C. and higher than a drying temperature. The process from coating to calcining is performed the process from coating to calcining once or at least twice, or the process from coating to drying is performed at least twice, and then calcining is performed once. The thickness of the dielectric thin film formed after the first calcining is 20 to 600 nm. The ratio of the thickness of the lower electrode and the thickness of the dielectric thin film formed after the initial calcining step (thickness of lower electrode/thickness of the dielectric thin film) is preferably in the range 0.10 to 15.0.