摘要:
A semiconductor package with a chip supporting structure is provided, including a lead frame having a die pad and a plurality of leads, and a plurality of chip supporting members mounted on the die pad. Each of the chip supporting members has a first surface and an opposing second surface and has an identical height. After the second surfaces of the chip supporting members are attached to the die pad, the first surfaces of the chip supporting members are coplanarly arranged, and a chip is mounted on the first surfaces of the chip supporting members, making the chip supporting members interposed between the chip and die pad. A molding resin for encapsulating the chip is allowed to penetrate through and fill into gaps between the chip and die pad, so as to prevent void formation and assure quality of fabricated products.
摘要:
A semiconductor package with a chip supporting member is provided, including a lead frame having a die pad and a plurality of leads, and a chip supporting member mounted on a central portion of the die pad. The chip supporting member has a first surface and an opposing second surface attached to the die pad. At least a chip is mounted on the first surface of the chip supporting member to space the chip apart from the die pad via the chip supporting member, so as to prevent the chip from being damaged by thermal stress induced by CTE (coefficient of thermal expansion) mismatch between the chip and lead frame, thereby eliminating delamination, warpage and chip cracks. Moreover, the chip supporting member interposed between the chip and die pad provides greater flexibility for mounting variously sized or shaped chips on the die pad without having to use chips corresponding to profile of the die pad.
摘要:
A semiconductor package device, a semiconductor package structure, and fabrication methods thereof are provided, which mainly includes disposing a plurality of semiconductor chips on a wafer formed with TSVs (Through Silicon Vias) and electrically connecting the semiconductor chips to the TSVs; encapsulating the semiconductor chips with an encapsulant; and disposing a hard component on the encapsulant. The hard component ensures flatness of the wafer during a solder bump process and provides support to the wafer during a singulation process such that the wafer can firmly lie on a singulation carrier, thereby overcoming the drawbacks of the prior art, namely difficulty in mounting of solder bumps, and difficulty in cutting of the wafer.
摘要:
A multi-chip stack structure and a method for fabricating the same are provided. The method for fabricating a multi-chip stack structure includes disposing a first chip group comprising a plurality of first chips on a chip carrier by using a step-like manner, disposing a second chip on the first chip on top of the first chip group, electrically connecting the first chip group and the second chip to the chip carrier through bonding wires, using film over wire (FOW) to stack a third chip on the first and the second chips with an insulative film provided therebetween, wherein the insulative film covers part of the ends of the bonding wires of the first chip on the top of the first group and at least part of the second chip, and electrically connecting the third chip to the chip carrier through bonding wires, thereby preventing directly disposing on a first chip a second chip having a planar size far smaller than that of the first chip as in the prior art that increases height of the entire structure and increases the wiring bonding difficulty.
摘要:
A multi-chip stack structure and a method for fabricating the same are provided. The method for fabricating a multi-chip stack structure includes disposing a first chip group comprising a plurality of first chips on a chip carrier by using a step-like manner, disposing a second chip on the first chip on top of the first chip group, electrically connecting the first chip group and the second chip to the chip carrier through bonding wires, using film over wire (FOW) to stack a third chip on the first and the second chips with an insulative film provided therebetween, wherein the insulative film covers part of the ends of the bonding wires of the first chip on the top of the first group and at least part of the second chip, and electrically connecting the third chip to the chip carrier through bonding wires, thereby preventing directly disposing on a first chip a second chip having a planar size far smaller than that of the first chip as in the prior art that increases height of the entire structure and increases the wiring bonding difficulty.
摘要:
The invention discloses a multi-chip stack structure having through silicon via and a method for fabricating the same. The method includes: providing a wafer having a plurality of first chips; forming a plurality of holes on a first surface of each of the first chips and forming metal posts and solder pads corresponding to the holes so as to form a through silicon via (TSV) structure; forming at least one groove on a second surface of each of the first chips to expose the metal posts of the TSV structure so as to allow at least one second chip to be stacked on the first chip, received in the groove and electrically connected to the metal posts exposed from the groove; filling the groove with an insulating material for encapsulating the second chip; mounting conductive elements on the solder pads of the first surface of each of the first chips and singulating the wafer; and mounting and electrically connecting the stacked first and second chips to a chip carrier via the conductive elements. The wafer, which is not totally thinned but includes a plurality of first chips, severs a carrying purpose during the fabrication process and thereby solves problems, namely a complicated process, high cost, and adhesive layer contamination, facing the prior art that entails repeated use of a carrier board and an adhesive layer for vertically stacking a plurality of chips and mounting the stacked chips on a chip carrier.
摘要:
The present invention provides a multi-chip stacking structure. The multichip stacking structure comprises: a chip carrier; a first and a second chip modules respectively having a plurality of first and a plurality of second chips, wherein each chips has a bond pad and the chips are stacked on the chip carrier in a step-like manner to expose the bond pads; and a plurality of bonding wires for electrically connecting the bond pads of the first and the second chip modules to the chip carrier, wherein a bottom chip of the second chip module is stacked on a top chip of the first chip module by an adhesive layer having fillers therein to support the bottom chip, and the bottom chip is deviated from the top chip horizontally in a direction toward the bonding wires of the first chip module.
摘要:
A semiconductor package with stacked chips and a method for fabricating the same are proposed. The semiconductor package includes a lead frame having a plurality of leads and supporting extensions; at least one preformed package having an active surface, and a non-active surface attached to the supporting extensions of the lead frame; at least one chip mounted on the active surface of the preformed package; a plurality of bonding wires for electrically interconnecting the lead frame, the preformed package and the chip; and an encapsulant for encapsulating the preformed package, the chip, the bonding wire and a portion of the lead frame. The active surface of the preformed package serves for carrying the chip and can be used as a wire jumper, so as to solve a known good die (KGD) problem of a multi-chip module.
摘要:
A semiconductor package device, a semiconductor package structure, and fabrication methods thereof are provided, which mainly includes disposing a plurality of semiconductor chips on a wafer formed with TSVs (Through Silicon Vias) and electrically connecting the semiconductor chips to the TSVs; encapsulating the semiconductor chips with an encapsulant; and disposing a hard component on the encapsulant. The hard component ensures flatness of the wafer during a solder bump process and provides support to the wafer during a singulation process such that the wafer can firmly lie on a singulation carrier, thereby overcoming the drawbacks of the prior art, namely difficulty in mounting of solder bumps, and difficulty in cutting of the wafer.
摘要:
A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires. The bump is used for supporting the leads to a certain height so as to keep the bonding wires from contacting the heating block and eliminate the need of using a second heating block in the second wire bonding process of the prior art, thereby saving time and costs in a fabrication process. Also, as positions where the first and second bonding wires are bonded to the leads on opposite sides of the leadframe correspond with each other, the conventional problems of adversely affected electrical performance and electrical mismatch can be prevented.