Abstract:
A lighting structure according to embodiments of the invention includes a semiconductor light emitting device and a flat wavelength converting element attached to the semiconductor light emitting device. The flat wavelength converting element includes a wavelength converting layer for absorbing light emitted by the semiconductor light emitting device and emitting light of a different wavelength. The flat wavelength converting element further includes a transparent layer. The wavelength converting layer is formed on the transparent layer.
Abstract:
Embodiments of the invention include a semiconductor structure including a light emitting layer sandwiched between an n-type region and a p-type region. A growth substrate is attached to the semiconductor structure. The growth substrate has at least one angled sidewall. A reflective layer is disposed on the angled sidewall. A majority of light extracted from the semiconductor structure and the growth substrate is extracted through a first surface of the growth substrate.
Abstract:
Intermediate removable placement and processing structures are provided to enable the formation of optical elements upon light emitting elements, including the formation of a reflective layer beneath the optical elements. These removable placement and processing structures are substantially independent of the particular dimensions of the produced light emitting device, allowing their re-use in a variety of applications. The resultant light emitting device includes the light emitting element,the optical element with reflector, and, optionally, a wavelength conversion material, but does not include remnants of the placement and processing structures, such as a carrier substrate.
Abstract:
A lighting structure according to embodiments of the invention includes a semiconductor light emitting device and a flat wavelength converting element attached to the semiconductor light emitting device. The flat wavelength converting element includes a wavelength converting layer for absorbing light emitted by the semiconductor light emitting device and emitting light of a different wavelength. The flat wavelength converting element further includes a transparent layer. The wavelength converting layer is formed on the transparent layer.
Abstract:
Embodiments of the invention include a semiconductor structure including a light emitting layer sandwiched between an n-type region and a p-type region. A growth substrate is attached to the semiconductor structure. The growth substrate has at least one angled sidewall. A reflective layer is disposed on the angled sidewall. A majority of light extracted from the semiconductor structure and the growth substrate is extracted through a first surface of the growth substrate.
Abstract:
Elements are added to a light emitting device to reduce the stress within the light emitting device caused by thermal cycling. Alternatively, or additionally, materials are selected for forming contacts within a light emitting device based on their coefficient of thermal expansion and their relative cost, copper alloys being less expensive than gold, and providing a lower coefficient of thermal expansion than copper. Elements of the light emitting device may also be structured to distribute the stress during thermal cycling.
Abstract:
Embodiments of the invention include a light emitting device including a substrate and a semiconductor structure including a light emitting layer. A first reflective layer surrounds the light emitting device. A wavelength converting element is disposed over the light emitting device. A second reflective layer is disposed adjacent a first sidewall of the wavelength converting element.
Abstract:
A structure according to embodiments of the invention includes a light emitting device for emitting light having a first peak wavelength. A wavelength converting layer is disposed in a path of light emitted by the light emitting device. The wavelength converting layer absorbs light emitted by the light emitting device and emits light having a second peak wavelength. The wavelength converting layer includes a mixture of a wavelength converting material, a transparent material, and an adhesive material, wherein the adhesive material is no more than 15% of the weight of the wavelength converting layer.