摘要:
A photodetector device includes a plurality of Ge epilayers that are grown on a substrate and annealed in a defined temperature range. The Ge epilayers form a tensile strained Ge layer that allows the photodetector device to operate efficiently in the C-band and L-band.
摘要:
A photodetector device includes a plurality of Ge epilayers that are grown on a substrate and annealed in a defined temperature range. The Ge epilayers form a tensile strained Ge layer that allows the photodetector device to operate efficiently in the C-band and L-band.
摘要:
A photodetector device includes a plurality of Ge epilayers that are grown on a substrate and annealed in a defined temperature range. The Ge epilayers form a tensile strained Ge layer that allows the photodetector device to operate efficiently in the C-band and L-band.
摘要:
A laser structure includes at least one active layer having doped Ge so as to produce light emissions at approximately 1550 nm from the direct band gap of Ge. A first confinement structure is positioned on a top region of the at least one active layer. A second confinement structure is positioned on a bottom region the at least one active layer.
摘要:
An optical modulator structure includes at least two waveguide structures for inputting and outputting an optical signal. At least one ring resonator structure provides coupling between the at least two waveguide structures. The at least one ring resonator structure includes Ge or SiGe.
摘要:
High-speed optoelectronic devices having a waveguide densely integrated with and efficiently coupled to a photodetector are fabricated utilizing methods generally compatible with CMOS processing techniques. In various implementations, the waveguide consists essentially of single-crystal silicon and the photodetector contains, or consists essentially of, epitaxially grown germanium or a silicon-germanium alloy having a germanium concentration exceeding about 90%.
摘要:
An optoelectronic device includes an input waveguide structure that receives an input optical signal. A GeSi/Si waveguide structure receives from the input waveguide the input optical signal and performs selective optoelectronic operations on the input optical signal. The GeSi/Si waveguide structure outputs an optical or electrical output signal associated with the selective optoelectronic operations performed on the input optical signal. An output waveguide structure receives the output optical signal from the GeSi/Si waveguide structure and provides the optical output signal for further processing.
摘要:
A method of manufacturing a photovoltaic cell includes providing an active absorption layer, forming a pseudo-periodic grating adjacent to the active absorption layer, and forming a reflector adjacent to the pseudo-periodic grating. A photovoltaic cell includes an active absorption layer, a pseudo-periodic grating adjacent to the active absorption layer, and a reflector adjacent to the pseudo-periodic grating.
摘要:
A light emitting device is provided that includes at least one first semiconductor material layers and at least one second semiconductor material layers. At least one near-direct band gap material layers are positioned between the at least one first semiconductor layers and the at least one second semiconductor material layers. The at least one first semiconductor layers and the at least one second material layers have a larger band gap than the at least one near-direct band gap material layers. The at least one near-direct band gap material layers have an energy difference between the direct and indirect band gaps of less than 0.5 eV.
摘要:
In a structure for crystalline material growth, there is provided a lower growth confinement layer and an upper growth confinement layer that is disposed above and vertically separated from the lower growth confinement layer. A lateral growth channel is provided between the upper and lower growth confinement layers, and is characterized by a height that is defined by the vertical separation between the upper and lower growth confinement layers. A growth seed is disposed at a site in the lateral growth channel for initiating crystalline material growth in the channel. A growth channel outlet is included for providing formed crystalline material from the growth channel. With this growth confinement structure, crystalline material can be grown from the growth seed to the lateral growth channel outlet.