摘要:
Techniques for forming packaged semiconductor devices having top surfaces with flash-free electrical contact surfaces are described. According to one aspect, a molding cavity is provided which has a molding surface that is sufficiently smooth such that when placed in contact with an electrically conductive contact, gaps between the conductive contact and the mold cavity surface do not form.
摘要:
This disclosure describes a clear overmolding cap for protecting the photonic devices in optoelectronic packages from damage due to handling, module assembly, board assembly, and environmental exposure in field applications. The overmolding of the devices with a clear mold cap or similar material also provides a standoff for optical fibers positioned next to the active facets. The photonic devices are attached to a substrate, which may be flexible that has electronic traces that allow the photonic devices to be connected to an external device such as a semiconductor device. A technique for manufacturing the overmolding cap using a mold die system in combination with a rigid carrier is also disclosed. The rigid carrier is used to maintain the shape of the substrate during the molding process. The proposed method applies to photonic devices used in optoelectronic packages that can serve as transceivers, transmitters, or receivers.
摘要:
The present invention provides a low cost device that has a true die to external fiber optic connection. Specifically, the present invention relates to an optical device package joined to a semiconductor device package. In some cases, the combination is joined using wirebond studs and an adhesive material. In other cases, the combination is joined using an anisotropic conductive film. Yet, in other cases, the combination is joined using solder material. Each of these joining mechanisms provides high levels of thermal, electrical and optical performance. The joining mechanisms can apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
摘要:
Concepts for conveniently arranging devices for the transduction of signals to and from voltage and current domains to infrared radiation domains is described. Specifically, optoelectronic components and methods of making the same are described. In one aspect, the optoelectronic component includes a base substrate having a pair of angled (or substantially perpendicular) faces with electrical traces extending therebetween. A semiconductor chip assembly is mounted on the first face of the base substrate and a photonic device is mounted on the second face. Both the semiconductor chip assembly and the photonic device are electrically connected to traces on the base substrate. The semiconductor chip assembly is generally arranged to be electrically connected to external devices. The photonic devices are generally arranged to optically communicate with one or more optical fibers. The described structure may be used with a wide variety of photonic devices. In some embodiments the base substrate is formed from a ceramic material having the electrical traces formed thereon. In other implementations the substrate includes a backing block having a flexible printed circuit substrate adhered thereto.
摘要:
Optoelectronic components, specifically, ceramic optical sub-assemblies are described. In one aspect, the optoelectronic component includes a ceramic base substrate having a pair of angled (or substantially perpendicular) faces. The electrical traces are formed directly on the ceramic surfaces and extend between the pair of faces. A semiconductor chip assembly is mounted on the first face of the ceramic base substrate and a photonic device is mounted on the second face. Both the semiconductor chip assembly and the photonic device are electrically connected to traces on the ceramic base substrate. The semiconductor chip assembly is generally arranged to be electrically connected to external devices. The photonic devices are generally arranged to optically communicate with one or more optical fibers. The described structure may be used with a wide variety of photonic devices. It is particularly well adapted for use with vertical cavity surface emitting lasers (or laser arrays) and detectors (or detector arrays). In some embodiments, at least the cathode of the photonic device is soldered directly to a cathode pad on the base substrate. Similarly, in some embodiments, the semiconductor chip assembly is electrically connected to the base substrate by direct soldering. Specific base substrate structures are disclosed as well.
摘要:
Techniques for manufacturing an optical transmission device in a manner so that the photonic device is protected from damage that can be caused by exposure to the environment and physical handling are described. The invention involves placing a lens or a lens array over a photonic device, either with or without the use of a receptacle device, such that the photonic device is contained within a sealed cavity. The invention has three main embodiments in which the photonic device can be hermetically sealed, quasi-hermetically sealed, or non-hermetically sealed. The optical transmission device can be configured to serve as an optical receiver, detector, or a transceiver device.
摘要:
Techniques for manufacturing an optical transmission device in a manner so that the photonic device is protected from damage that can be caused by exposure to the envirorunent and physical handling are described. The invention involves placing a lens or a lens array over a photonic device, either with or without the use of a receptacle device, such that the photonic device is contained within a sealed cavity. The invention has three main embodiments in which the photonic device can be hermetically sealed, quasi-hermetically sealed, or non-hermetically sealed. The optical transmission device can be configured to serve as an optical receiver, detector, or a transceiver device.
摘要:
A method and system is presented for bypassing a local Domain Name Server (DNS) when using edge caching servers. Domain names of frequently used business applications that are known to rely upon edge servers, together with the corresponding authoritative DNSs, are listed in both local hosts file and user defined FSFD local configuration file fsfd.conf. When the client computer's browser attempts to resolve a domain name, a File System Filtering Driver (FSFD) in the client computer intercepts the browser's request. If the domain name which is being resolved is found in a local FSFD configuration file fsfd.conf, then the FSFD initiates a DNS request directly to the appropriate authoritative DNS whose IP address gets extracted from the fsfd.conf record, thus bypassing the local DNS. The authoritative DNS returns the IP address for an edge caching server that is topographically proximate to the client computer's browser.
摘要:
A method and apparatus for forming a layer of underfill encapsulant on an integrated circuit located on a wafer are described. As a flip chip, the integrated circuit has electrically conductive pads, most of which have a solder ball attached thereto. Most of the solder balls have been flattened in order to provide an enlarged solder wetting area. A layer of underfill encapsulant is injected onto the integrated circuit under pressure to form a layer of underfill encapsulant that is then pre-cured. The integrated circuit is mounted to a substrate and the substrate and the integrated circuit are electrically coupled by a solder reflow operation which also finally cures the underfill encapsulant.
摘要:
A method and an apparatus for forming a plastic chip on chip module is disclosed. The plastic chip on chip module is formed by placing a stacked chip set into a molding chamber suitably arranged to receive encapsulant. The stacked chip set includes a daughter chip that is electrically and mechanically coupled to a mother chip where the daughter chip is directly aligned to and separated from the mother chip by a standoff gap. Encapsulant is then passed into the molding chamber filling the standoff gap substantially simultaneously with surrounding the chip set to form the plastic chip on chip module.