Abstract:
The invention is embodied in an inductively coupled RF plasma reactor including a reactor chamber enclosure defining a plasma reactor chamber and a support for holding a workpiece inside the chamber, a non-planar inductive antenna adjacent the reactor chamber enclosure, the non-planar inductive antenna including inductive elements spatially distributed in a non-planar relative to a plane of the workpiece to compensate for a null in an RF inductive pattern of the antenna, and a plasma source RF power supply coupled to the non-planar inductive antenna. The planar inductive antenna may be symmetrical or non-symmetrical, although it preferably includes a solenoid winding such as a vertical stack of conductive windings. In a preferred embodiment, the windings are at a minimum radial distance from the axis of symmetry while in an alternative embodiment the windings are at a radial distance from the axis of symmetry which is a substantial fraction of a radius of the chamber.
Abstract:
The invention is embodied in an inductively coupled RF plasma reactor including a reactor chamber enclosure defining a plasma reactor chamber and a support for holding a workpiece inside the chamber, a non-planar inductive antenna adjacent the reactor chamber enclosure, the non-planar inductive antenna including inductive elements spatially distributed in a non-planar manner relative to a plane of the workpiece to compensate for a null in an RF inductive pattern of the antenna, and a plasma source RF power supply coupled to the non-planar inductive antenna. The planar inductive antenna may be symmetrical or non-symmetrical, although it preferably includes a solenoid winding such as a vertical stack of conductive windings. In a preferred embodiment, the windings are at a minimum radial distance from the axis of symmetry while in an alternative embodiment the windings are at a radial distance from the axis of symmetry which is a substantial fraction of a radius of the chamber.
Abstract:
An improved method of fabricating integrated circuit structures on semiconductor wafers using a plasma-assisted process is disclosed wherein the plasma is generated by a VHF/UHF power source at a frequency ranging from about 50 to about 800 MHz. Low pressure plasma-assisted etching or deposition processes, i.e., processes may be carried out within a pressure range not exceeding about 500 milliTorr; with a ratio of anode to cathode area of from about 2:1 to about 20:1, and an electrode spacing of from about 5 cm. to about 30 cm. High pressure plasma-assisted etching or deposition processes, i.e., processes may be carried out with a pressure ranging from over 500 milliTorr up to 50 Torr or higher; with an anode to cathode electrode spacing of less than about 5 cm. By carrying out plasma-assisted processes using plasma operated within a range of from about 50 to about 800 MHz, the electrode sheath voltages are maintained sufficiently low, so as to avoid damage to structures on the wafer, yet sufficiently high to preferably permit initiation of the processes without the need for supplemental power sources. Operating in this frequency range may also result in reduction or elimination of microloading effects.
Abstract:
A plasma chamber enclosure structure for use in an RF plasma reactor. The plasma chamber enclosure structure being a single-wall dielectric enclosure structure of an inverted cup-shape configuration and having ceiling with an interior surface of substantially flat conical configuration extending to a centrally located gas inlet. The plasma chamber enclosure structure having a sidewall with a lower cylindrical portion generally transverse to a pedestal when positioned over a reactor base, and a transitional portion between the lower cylindrical portion and the ceiling. The transitional portion extends inwardly from the lower cylindrical portion and includes a radius of curvature. The structure being adapted to cover the base to comprise the RF plasma reactor and to define a plasma-processing volume over the pedestal. The structure being formed of a dielectric material of silicon, silicon carbide, quartz, and/or alumina being capable of transmitting inductive power therethrough from an adjacent antenna.
Abstract:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
Abstract:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
Abstract:
A variable RF power splitter including three serially connected inductors (14, 15, 16) powered by an RF power source (11, 12). Two loads (17, 18), between which the RF power is to be split, are connected to ground from two different points in the inductance string. A variable reactance (19) connected to ground from another point in the inductance string controls the RF power splitting.
Abstract:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
Abstract:
The invention is embodied in an RF plasma reactor for processing a semiconductor workpiece, including wall structures for containing a plasma therein, a workpiece support, a coil antenna capable of receiving a source RF power signal and being juxtaposed near the chamber, the workpiece support including a bias electrode capable of receiving a bias RF power signal, and first and second magnet structures adjacent the wall structure and in spaced relationship, with one pole of the first magnet structure facing an opposite pole of the second magnet structure, the magnet structures providing a plasma-confining static magnetic field adjacent said wall structure. The invention is also embodied in an RF plasma reactor for processing a semiconductor workpiece, including one or more wall structures for containing a plasma therein, a workpiece support, the workpiece support comprising a lower electrode, an upper electrode facing the lower electrode and spaced across a plasma generation region of said chamber from said lower electrode, and first and second magnet structures adjacent the wall structure and in spaced relationship with one pole of the first magnet structure facing an opposite pole of the second magnet structure, the magnet structures providing a plasma-confining static magnetic field adjacent said wall structure.
Abstract:
A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.