Abstract:
The invention relates to a soldering material comprising an alloy that in addition to Sn (tin) as the major constituent, comprises 10 wt. % or less Ag (silver), 10 wt. % or less Bi (bismuth), 10 wt. % or less Sb (antimony) and 3 wt. % or less Cu (copper). Furthermore, the invention relates to a soldering material comprising a plurality of soldering components with such alloy compositions and contents in the soldering material that on fusing the soldering components an alloy is formed that comprises Sn, Ag, Bi, Sb and Cu in the abovementioned alloy contents.
Abstract:
A pump unit includes a drive motor (14) and a first housing (2), in which a control electronics unit (18) is arranged for operating the drive motor (14). An operating unit (20) having at least one display or operating element (26, 28, 30) can be detachably connected to the first housing in at least two different positions.
Abstract:
A toothed wheel (16) is provided with teeth, in which a cross section of a respective first section (24) of the tooth (23) has an outer contour that projects in at least one partial area of the outer contour relative to an outer contour of the adjoining second section (26) of the tooth (23), and is elastically designed and/or mounted, as well as a pump unit, in particular as a metering pump unit, with a drive having a toothed gearing with the toothed wheel.
Abstract:
A metering pump assembly includes a metering space (6) and a displacement body (8) which is linearly movable via a conrod (10). A helical spring (20) designed as a compression spring (20) impinges the conrod (10) with a force in a movement direction. The helical spring (20) at at least one axial end (24) is designed such that in a relaxed condition an end (26) of a spring wire projects axially with respect to a connecting winding (28).
Abstract:
The invention relates to an optoelectronic component, having —a carrier (1) comprising a first main surface (Ia), —at least one optoelectronic semiconductor chip (2) having no substrate, and —a contact metallization (3a, 3b), wherein —the carrier (1) is electrically insulating, —the at least one optoelectronic semiconductor chip (2) is fastened to the first main surface (Ia) of the carrier (1) by means of a bonding material (4), particularly a solder material, —the contact metallization (3a, 3b) covers at least one area of the first main surface (Ia) free of the optoelectronic semiconductor chip (2), and —the contact metallization (3a, 3b) is electrically conductively connected to the optoelectronic semiconductor chip (2).
Abstract:
The invention relates to a method and a device for monitoring a fluid flow delivered by means of a pump. In the method the pressure distribution of the fluid is continuously or quasi-continuously measured as actual values in partial areas of the pump stroke and compared with desired values. In the device at least one pressure sensor is provided for the continuous or quasi-continuous measurement of the pressure of a fluid at least in partial areas of the pump stroke and a comparator is provided for comparing the measured actual values of the pressure with desired values.
Abstract:
In a laminated composite comprising a support made of a thermoplastic polymer, an intermediate layer located thereon which is likewise made of a thermoplastic polymer and a heat-cured layer applied to the intermediate layer, a resin layer (a) having a degree of curing of at least 20% is additionally inserted between the support and the intermediate layer and a resin layer (c) having a degree of curing of at least 60% is inserted between the intermediate layer and the heat-cured layer.
Abstract:
The method provides that a session code (K) can be agreed between a first computer unit (U) and a second computer unit (N), without it being possible for any unauthorized third party to gain access to useful information relating to the codes or the identity of the first computer unit (U). This is achieved by embedding the principle of the El-Gamal code interchange in the method, with additional formation of a digital signature via a hash value of the session code (K) which is formed by the first computer unit (U).
Abstract:
A solvent-free multilayer laminated material comprises a lower substrate layer comprising a thermoplastic polymer or a mixture of thermoplastic polymers, an intermediate layer arranged thereon and comprising a flexible material, a further fibrous intermediate layer comprising plastic, which is provided with an adhesive material and an upper layer comprising metal, comprising plastic or comprising wood or wood-like materials. It does surprisingly not show any deformation even under exposure to temperatures of about 80° C. over a period of up to 40 days and can be used for the production of articles of furniture, floor coverings, wall panels or shaped articles for the electrical, construction or automotive industry.
Abstract:
A method for obtaining a vegetable protein fraction, in particular for producing vegetable ice cream, is described wherein vegetable parts are added to water or to an aqueous solvent in order to dissolve and/or disperse vegetable proteins from the vegetable parts, and wherein one or more vegetable protein fractions are separated from the aqueous mixture thus obtained by the separation. According to the method, one or more substances having lipophilic or amphiphilic boundary surfaces are added to the aqueous mixture in order to separate one or more vegetable protein fractions, to which dissolved and/or dispersed proteins having lipophilic or amphiphilic groups in the mixture attach. The substances including the attached proteins are separated from the mixture. A vegetable protein fraction having particularly good emulsifying characteristics is obtained by the method, the protein fraction being advantageous as an emulsifier in the production of vegetable ice cream.