Abstract:
An embodiment provides a semiconductor device comprising: a substrate; a semiconductor structure disposed on the substrate and including a first conductive semiconductor layer, a second conductive semiconductor layer, and an activation layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer; a bonding layer disposed between the semiconductor structure and the substrate; a cover layer disposed between the bonding layer and the semiconductor structure; and an electrode pad disposed on the cover layer and spaced apart from the semiconductor structure, wherein: the semiconductor structure further comprises a stepped portion at which the lateral surface of the second conductive semiconductor layer, the lateral surface of the activation layer, and the lower surface of the first conductive semiconductor layer are exposed; the stepped portion is disposed at the outer portion of the semiconductor structure; and the cover layer is disposed to extend from a region vertically overlapping the electrode pad to a region vertically overlapping a part of the exposed lower surface of the first conductive semiconductor layer.
Abstract:
Disclosed in an embodiment is a light emitting device comprising: a light-emitting structure having a first semiconductor layer, an active layer under the first semiconductor layer, and a second semiconductor layer under the active layer; a first contact layer disposed under the light-emitting structure; a reflective layer disposed under the first contact layer; a first electrode layer including a capping layer disposed under the reflective layer; a second electrode layer electrically connected with the first semiconductor layer; a protective layer disposed at the outer peripheral portion between the capping layer and the light-emitting structure; a barrier layer at an outer side of the reflective layer and made of a metal different from that of the reflective layer; and a support member disposed under the capping layer.a
Abstract:
Disclosed according to one embodiment is a light-emitting element comprising: a light-emitting structure comprising a first semiconductor layer, an active layer, and a second semiconductor layer; a second conductive layer electrically connected to the second semiconductor layer; a first conductive layer which is disposed in a plurality of via holes passing through the light-emitting structure and second conductive layer and comprises a plurality of through electrodes electrically connected to the first semiconductor layer; an insulation layer for electrically insulating the plurality of through electrodes from the active layer, second semiconductor layer, and second conductive layer; and an electrode pad disposed in an exposed area of the second conductive layer, wherein the farther away the second conductive layer disposed between the plurality of through electrodes is from the electrode pad, the greater the width of the second conductive layer becomes.
Abstract:
A protective sheet according to an embodiment includes an optical film layer; and an adhesive layer disposed on one surface of the optical film layer and including a first open region; wherein an outer width of the optical film layer is greater than an outer width of the adhesive layer, wherein a central region of the one surface of the optical film layer is exposed through the first open region of the adhesive layer, and an outer region of the one surface of the optical film layer is exposed by a difference from the outer width of the adhesive layer.
Abstract:
Embodiments relate to a light emitting device package including a package body, a light emitting structure disposed on the package body, the light emitting structure including a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer, the light emitting structure being divided into at least two light emitting cells, a support substrate located between the package body and the light emitting structure, a first electrode and a second electrode connected to each of the light emitting cells and fluorescent substances disposed respectively on the light emitting cells. At least two layers among the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer included in each of the light emitting cells next to each other are electrically separated from each other.
Abstract:
A semiconductor device according to an embodiment includes: a light emitting structure including a first conductive semiconductor layer, an active layer under the first conductive semiconductor layer, a second conductive semiconductor layer under the active layer, and a plurality of recesses exposing a lower portion of the first conductive semiconductor layer; at least one pad arranged outside the light emitting structure and arranged to be adjacent to at least one edge; and a plurality of insulation patterns arranged in the recesses and extending to a lower surface of the light emitting structure, in which widths of the plurality of insulation patterns are reduced as the insulation patterns become further away from the pad. The semiconductor device according to the embodiment may prevent a current from being focused on a recess area adjacent to the pad.
Abstract:
Disclosed according to one embodiment is a light-emitting element comprising: a light-emitting structure comprising a first semiconductor layer, an active layer, and a second semiconductor layer; a second conductive layer electrically connected to the second semiconductor layer; a first conductive layer comprising a plurality of through electrodes electrically connected to the first semiconductor layer through the second conductive layer and the light-emitting structure; an insulation layer for electrically insulating the plurality of through electrodes from the active layer, the second semiconductor layer, and the second conductive layer; and an electrode pad disposed in an exposed area of the second conductive layer, wherein the plurality of through electrodes differ in the area of a first region electrically connected to the first semiconductor layer.
Abstract:
In one embodiment, a light emitting device comprises a first light emitting part including at least one light emitting cell; a second light emitting part including a plurality of light emitting cells, wherein each of the light emitting cells include a light emitting structure and a first electrode layer disposed under the light emitting structure; a plurality of pads disposed on the light emitting cell of the first light emitting part, wherein the pads are electrically connected to each of the light emitting cells of the first and second light emitting parts; a plurality of connection layers, each connection layer extending from a region under the light emitting cell of the first light emitting part to a region under the plurality of light emitting cells of the second light emitting part; a second electrode layer disposed under the light emitting cells of the first and second light emitting parts; an insulating layer disposed between the first and second electrode layers; and at least one gap part disposed between the at least one light emitting cell of the first light emitting part and the plurality of light emitting cells of the second light emitting part, wherein each of the plurality of connection layers extends through a region under the gap part and is electrically connected to each of the plurality of the light emitting cells of the second light emitting part.