摘要:
A semiconductor device according to the present disclosure includes: a plate (13) having a through hole (15); a metal column (16) fixed to the through hole with an insulating member (17) interposed therebetween, and having a projection projecting from the upper surface of the plate; a semiconductor element (12) fixed to the projection; a lead frame (11) electrically connected to the semiconductor element; and a package (14) covering the semiconductor element, and also covering at least part of each of the plate, the metal column, and the lead frame. The lower surface (13b) of the plate is exposed from the package.
摘要:
A semiconductor device according to the present disclosure includes: a plate (13) having a through hole (15); a metal column (16) fixed to the through hole with an insulating member (17) interposed therebetween, and having a projection projecting from the upper surface of the plate; a semiconductor element (12) fixed to the projection; a lead frame (11) electrically connected to the semiconductor element; and a package (14) covering the semiconductor element, and also covering at least part of each of the plate, the metal column, and the lead frame. The lower surface (13b) of the plate is exposed from the package.
摘要:
First, an aqueous solution (103) containing an oxide film remover is disposed on a junction region of a first metal plate (101). Then, with the aqueous solution (103) remaining on the first metal plate (101), a second metal plate (102) is placed on the first metal plate (101). Thereafter, a load is applied to junction regions of the first metal plate (101) and the second metal plate (102) in the vertical direction, thereby joining the first metal plate (101) and the second metal plate (102) together to form a junction portion (110). In this manner, a joined body is manufactured.
摘要:
An encapsulated semiconductor device includes: a first conduction path formative plate (1); a second conduction path formative plate (5) joined to the first conduction path formative plate; a power element (12) bonded to the first conduction path formative plate; a heatsink (14) held by the first conduction path formative plate with an insulation sheet (13) interposed between the heatsink and the first conduction path formative plate; and an encapsulation resin (9) configured to encapsulate the first and second conduction path formative plates. A through hole (3) or a lead gap (1b) is formed in a region of the first conduction path formative plate in contact with the insulation sheet. The insulation sheet is press-fitted into the through hole or the lead gap.
摘要:
A joined body which is formed by, first, an aqueous solution containing an oxide film remover is disposed on a junction region of a first metal plate. Then, with the aqueous solution remaining on the first metal plate, a second metal plate is placed on the first metal plate. Thereafter, a load is applied to junction regions of the first metal plate and the second metal plate in the vertical direction, thereby joining the first metal plate and the second metal plate together to form a junction portion.
摘要:
An encapsulated semiconductor device includes: a first conduction path formative plate (1); a second conduction path formative plate (5) joined to the first conduction path formative plate; a power element (12) bonded to the first conduction path formative plate; a heatsink (14) held by the first conduction path formative plate with an insulation sheet (13) interposed between the heatsink and the first conduction path formative plate; and an encapsulation resin (9) configured to encapsulate the first and second conduction path formative plates. A through hole (3) or a lead gap (1b) is formed in a region of the first conduction path formative plate in contact with the insulation sheet. The insulation sheet is press-fitted into the through hole or the lead gap.
摘要:
A mounting structure is provided that can allow gaseous matter generated when performing a heat treatment to escape to outside efficiently. A mounting structure 10 includes a substrate 1 having electrodes 2a and 2b, an electronic component 3 having electrodes 21a and 21b, joints 15a and 15b that electrically connect the electrodes 2a and 2b of the substrate 1 and the electrodes 21a and 21b of the electronic component 3 and also fix the electronic component 3 to the surface of the substrate 1, and a convex portion 4 that abuts against the electrode 2a of the substrate 1 and the electrode 21a of the electronic component 3 and is used as a spacer.
摘要:
A mounting structure is provided that can allow gaseous matter generated when performing a heat treatment to escape to outside efficiently. A mounting structure 10 includes a substrate 1 having electrodes 2a and 2b, an electronic component 3 having electrodes 21a and 21b, joints 15a and 15b that electrically connect the electrodes 2a and 2b of the substrate 1 and the electrodes 21a and 21b of the electronic component 3 and also fix the electronic component 3 to the surface of the substrate 1, and a convex portion 4 that abuts against the electrode 2a of the substrate 1 and the electrode 21a of the electronic component 3 and is used as a spacer.
摘要:
A higher speed moving device moves a capillary at high speed. A low inertial moving and pressing device moves and presses the capillary with low inertia. The high speed motion, and the moving and pressing motion with the low inertia are carried out independently of each other. Thus, an inertia at the low inertial moving and pressing device is reduced, whereby an impact force when a melt ball is driven by the low inertial moving and pressing device into contact with an electrode of a semiconductor integrated circuit is restricted, thus enabling stable formation for minute bumps. On the other hand, operations other than pressing the melt ball to the electrode and joining the melt ball are conducted by driving the capillary by the higher speed moving device, so that productivity is improved.
摘要:
A plurality of film substrates (2) having a bare chip (1) mounted on one side or both sides are joined into a laminated state by joint portions (3) and are attached to a motherboard (4) through junction by a joint portion (8) at a location off the mounting areas of the bare chips (1), thereby achieving a lower profile, higher lamination, and higher capacity.