摘要:
A light-emitting semiconductor device comprising an n-type cladding layer provided on a surface of a substrate and having concentric first and second parts, a first electrode mounted on the first part of the n-type cladding layer, a p-type cladding layer provided above the surface of the substrate and surrounding the first electrode and the second part of the n-type cladding layer, and a second electrode provided on the p-type cladding layer.
摘要:
This invention provides a semiconductor light-emitting device including a semiconductor substrate consisting of a compound semiconductor of elements in the third and fifth groups of the period table, a first compound semiconductor layer formed directly on at least a portion of the semiconductor substrate and consisting of a compound semiconductor containing at least In and P, and a second compound semiconductor formed directly on the first compound semiconductor layer and consisting of a compound semiconductor of elements in the second and sixth groups of the periodic table. With this arrangement, it is possible to sufficiently prevent the occurrence of defects in the interface between the semiconductor substrate and the second compound semiconductor layer consisting of the compound semiconductor of the elements in the second and sixth groups of the periodic table.
摘要:
A semiconductor light-emitting device comprises a semiconductor light-emitting device section of a hexagonal type; and an electrically conductive semiconductor substrate of a cubic type combined into the semiconductor light-emitting device, and having an orientation of its cleavage facet conformed to an orientation of the cleavage facet of one of semiconductor layers forming the semiconductor light-emitting device section. The substrate of the cubic type is cleaved so that the semiconductor light-emitting device section of the hexagonal type is induced to be cleaved, and that a mirror surface can be easily formed.
摘要:
A compound semiconductor device with an improved internal current blocking structure. The semiconductor device includes an n-clad layer of II-VI compound semiconductor, a p-clad layer of II-VI compound semiconductor, an active layer of II-VI compound semiconductor between the n-clad and p-clad layers, a very thin current blocking layer of n-type II-VI compound semiconductor on the p-clad layer and providing an opening, a p-contact layer of p-type II-VI compound semiconductor on the p-clad layer and the current blocking layer at the opening, and a p-side electrode on the p-contact layer.
摘要:
A semiconductor device includes a first semiconductor layer formed of first semiconductor, a second semiconductor layer formed on the first semiconductor layer and formed of second semiconductor of a group different from a group to which the first semiconductor belongs, and a third semiconductor layer formed between the first and second semiconductor layers, the third semiconductor layer being one of a layer formed of third semiconductor of the same group as the first semiconductor and having an impurity concentration higher than the first semiconductor layer and a layer formed of fourth semiconductor of the same group as the second semiconductor and having an impurity concentration higher than the second semiconductor layer.
摘要:
A semiconductor device includes a first semiconductor layer formed of first semiconductor, a second semiconductor layer formed on the first semiconductor layer and formed of second semiconductor of a group different from a group to which the first semiconductor belongs, and a third semiconductor layer formed between the first and second semiconductor layers, the third semiconductor layer being one of a layer formed of third semiconductor of the same group as the first semiconductor and having an impurity concentration higher than the first semiconductor layer and a layer formed of fourth semiconductor of the same group as the second semiconductor and having an impurity concentration higher than the second semiconductor layer.
摘要:
A wedge-like etching groove is formed so that stresses can be collected along a cleavage surface of a nitride based compound semiconductor, and end portions are separated from a substrate. With these operations, a light-emitting layer can form an excellent mirror by a natural cleavage. Further, by separating a portion of the end surfaces from the substrate, it is possible to suppress a deformation from the substrate and therefore, a deterioration due to the deformation can be prevented. Therefore, it is possible to provide a nitride based compound semiconductor light-emitting device which can form an excellent cleavage surface with a simple process.
摘要:
In a nitride compound semiconductor light emitting device, an In.sub.0.3 Ga.sub.0.7 N/GaN multi-quantum well active layer 105 or an In.sub.0.1 Ga.sub.0.9 N/GaN multi-quantum well adjacent layer 104 is made as a saturable absorptive region so that self-pulsation occurs there. Thus, the device ensures self-pulsation with a high probability with a simple structure, and satisfies requirements for use as an optical head for reading data from an optical disc.
摘要:
The present invention is intended to provide a semiconductor optoelectric device with high luminescent efficiency and a method of manufacturing the same. The semiconductor optoelectric device 18 according to the present invention is constructed by depositing compound-semiconductor layers 13 and 14 on a monocrystalline substrate 11 of a hexagonal close-packed structure. The shape of the monocrystalline substrate 11 is a parallelogram. Individual sides of the parallelogram are parallel to a orientation. As the monocrystalline substrate, sapphire, zinc oxide or silicon carbide may be used. As the compound-semiconductor layers, an n-type GaN layer 13 and p-type GaN layer 14 may be used.
摘要:
The present invention is intended to provide a semiconductor optoelectric device with high luminescent efficiency and a method of manufacturing the same. The semiconductor optoelectric device 18 according to the present invention is constructed by depositing compound-semiconductor layers 13 and 14 on a monocrystalline substrate 11 of a hexagonal close-packed structure. The shape of the monocrystalline substrate 11 is a parallelogram. Individual sides of the parallelogram are parallel to a orientation. As the monocrystalline substrate, sapphire, zinc oxide or silicon carbide may be used. As the compound-semiconductor layers, an n-type GaN layer 13 and p-type GaN layer 14 may be used.