摘要:
A wafer etching method wherein hydrogen gas, ammonia gas or mixed gas containing one of these gases is added to sulfur hexafluoride gas to suppress the occurrence of white turbidity on the surface of the wafer at the time of etching and to enable high quality mirror polishing of the wafer. In one embodiment, a mixed gas obtained by mixing SF6 gas G1 of a bomb 31 and H2 gas G2 of a bomb 32 in a predetermined ratio is fed to a discharge tube 2 and a microwave M is generated from a microwave oscillator 4 to cause plasma discharge. Further, the entire surface of the silicon wafer W can be flattened by locally etching the surface of the silicon wafer W by an activated species gas G sprayed from the nozzle portion 20.
摘要:
A wafer flattening process and system enables a reduction of the surface roughness of a wafer resulting from local etching. A silicon wafer W is brought into close proximity to a nozzle portion 20 to feed SF6 gas to an alumina discharge tube 2, a plasma generator 1 is used to cause plasma discharge and spray a first activated species gas from the nozzle portion 20 to the silicon wafer W side, an X-Y drive mechanism 4 is used to make the nozzle portion 20 scan to perform a local etching step. Then the silicon wafer W is moved away from the nozzle portion 20 and O2 gas and CF4 gas are fed to the alumina discharge tube. At this time, the O2 gas is set to be greater in amount than the CF4 gas. When this mixed gas is made to discharge to generate plasma, a second activated species gas diffuses from the nozzle portion 20 to the entire surface of the silicon wafer W. Since there is a larger amount of O radicals than F radicals, the reaction product resulting from the O radicals deposit in fine depressions causing roughness and the front surface of the silicon wafer W is smoothed.
摘要:
A wafer flattening system is provided to consecutively and automatically remove the natural oxide film from a wafer and flatten and smooth the wafer so as to improve the surface roughness of the wafer and improve the work efficiency. A step of immersing the wafer in an aqueous solution of hydrofluoric acid of a natural oxide film removing device is performed so as to remove the natural oxide film, then followed by a step of locally etching the surface of the wafer at a local etching apparatus by an activated species gas produced from SF6 gas to flatten the surface. Then, a step of giving a mirror finish to the wafer surface by a CMP apparatus is performed to smooth it. It is also possible to perform the step of removal of the natural oxide film by spraying the entire surface of the wafer by an activated species gas produced from a mixed gas of CF4 gas and H2 gas and possible to perform the step of smoothing by spraying the entire surface of the wafer by an activated species gas produced from a mixed gas of CF4 gas and O2 gas.
摘要:
A wafer flattening process designed to flatten the entire surface of the wafer including the outer rim of the wafer by inserting dummy data corresponding to the data of the outer rim of the wafer in the data of the outside of the wafer, and a storage medium for the same. An area S is set at an outside position exactly an etching radius r from an outer rim Wc of the wafer Wc ahd the nozzle relative speed at the position-speed data D of points P4-1 to P4-3 closest to an imaginary line L passing through the point P4 inside the area S near the outer rim Wc is set to be the same as the nozzle relative speed of the position-speed data D of the point P4. Due to this, the nozzle spraying the activated species gas G moves as if along the imaginary line L and the portion of the point P4 is etched flat by superposition of the activated species gas G of the nozzle passing through the points P4-1 to P4-3, the point P4, and the point P6.
摘要:
A corrosion-resistant system and method for a plasma etching apparatus are provided which are capable of reducing a corrosion or erosion phenomenon of a discharge tube, equipment and/or elements in a chamber of the plasma etching apparatus which is used for localized etching. A micro wave M is oscillated from a micro wave oscillator 20 toward a mixed gas of CF4 and O2 in a quartz discharge tube 110 to thereby produce plasma discharge. The micro wave oscillator 20 is controlled in an on-off manner by means of a pulse generator 21, to thereby oscillate a pulsed micro wave M. As a result, it is possible to reduce the erosion of the quartz discharge tube 110 caused by an active species gas G generated by the plasma discharge. Preferably, a corrosion-resistant oil A is filled in the chamber 100 for preventing an X-Y drive mechanism 130, etc., therein from being corroded or eroded by the active species gas G diffusing in the chamber 100.
摘要:
Plasma etching method and apparatus for removing relatively thick portions from wafers by etching while measuring an actual etch quantity to thereby manufacture the wafers excellent in flatness quality on a mass-production basis. A conduit 20 of a plasma generator 2 is positioned above a relatively thick portion 111 of the wafer 110 to etch away a wafer material from the relatively thick portion 111 by ejecting a fluorine gas G. A laser beam L0 is emitted from a laser displacement meter 30 of a measuring apparatus 3 to detect an interference state between a reflected light beam L1 from the relatively thick portion 111 and a reflected light beam L2 form a reflecting plate 32 and count periodical changes of the interference state. When the count value m coincides with an integral value derived by dividing a desired etch quantity by a half wavelength of the laser beam L0, etching of the relatively thick portion 111 by the fluorine gas G is terminated.
摘要:
A wafer flattening process designed to flatten the entire surface of the wafer to a higher precision by projecting the fall in the etching rate at the outer peripheral portion of the wafer and forming the outer peripheral portion of the wafer thinner in advance before plasma etching the entire surface of the wafer, a wafer flattening system, and a wafer flattened by the same. The wafer flattening system is provided with a CMP apparatus 1 and a plasma etching apparatus 2 are provided. The outer peripheral portion Wb of a wafer W held by a carrier 11 is polished thinner than an inside portion Wc of the wafer W by the CMP apparatus 1 having a platen 10 formed with a recessed surface. Specifically, it is polished so that the maximum thickness at the outer peripheral portion Wb of the wafer W becomes not more than the minimum thickness at the inside portion Wc. Suitably thereafter, the plasma etching apparatus 2 locally etches the surface Wa of the wafer W to obtain a wafer W with a high flatness without any projecting portion at the outer peripheral portion Wb.
摘要:
A measuring chip is configured for separating and measuring a target component in a sample by rotation around first and second axes of rotation. The measuring chip includes a centrifugal separation tube that centrifugally separates the target component from the sample by rotating the measuring chip around the first axis of rotation; a first holding section installed in the bottom of the centrifugal separation tube, wherein non-target components other than the target component in the sample are introduced therein by rotation around the first axis of rotation, and the first holding section holds the non-target components during rotation around the second axis of rotation; and a measuring section connected to one end of the centrifugal separation tube that measures the non-target components introduced from the centrifugal separation tube by rotation around the second axis of rotation.
摘要:
A corpuscle/plasma separating part is disposed at the lower end of the substrate, and a sensor part connected to the corpuscle/plasma separating part is disposed at the upper end of the substrate, with a calibration solution reservoir being disposed on the lower side of the sensor part, and a calibration solution waste reservoir being disposed on the upper side of the sensor part. A first centrifugal axis is located upper to the corpuscle fraction storing part and lower to the plasma fraction storing part of the corpuscle/plasma separating part, while a second centrifugal axis is located within or close to the sensor part. Conveyance and discharge of the calibration solution can be carried out by performing centrifugation around the first centrifugal axis which is distant from the sensor part at a low speed of rotation, so that the centrifugal force exerted on the sensors would be small. During the centrifuge operation at a high speed of rotation for the separation of blood corpuscles, centrifugation can be performed around the second centrifugal axis so that the centrifugal force exerted on the sensors is small. Centrifuge operation allows separation of the blood corpuscles and blood plasma, and conveyance of the blood plasma and the calibration solution, as well as certain discharge of the calibration solution from the sensors, thereby allowing precise analysis. Any damage in the sensors due to strong centrifugal force during the separation of blood corpuscles and blood plasma can be prevented.
摘要:
In an ECR plasma generator, radio frequency ranging from 3 to 300 MHz is applied from a radio frequency power supply to an electrode which is provided in a chamber having an exhaust system and which serves as a shower head for gas introduction, and power is supplied to a coil provided at the outer periphery of the chamber, so as to form a magnetic field an integer number of times as large as a resonant magnetic field corresponding to the applied radio frequency, parallel with the direction of an electric field and to generate ECR plasma in an atmosphere of the supplied process gas.