摘要:
A Si-rich silicon oxide layer having reduced UV transmission is deposited by PECVD, on an interlayer dielectric, prior to metallization, thereby reducing Vt. Embodiments include depositing a UV opaque Si-rich silicon oxide layer having an R.I. of 1.7 to 2.0.
摘要:
The present invention pertains to implementing a lightly doped channel (LDC) implant in fashioning a memory device to improve Vt roll-off, among other things. The lightly doped channel helps to preserve channel integrity such that a threshold voltage (Vt) can be maintained at a relatively stable level and thereby mitigate Vt roll-off. The LDC also facilitates a reduction in buried bitline width and thus allows the bitlines to be brought closer together. As a result more devices can be formed or “packed” within the same or a smaller area.
摘要:
The present invention, in one embodiment, relates to a process for fabricating a charge trapping dielectric flash memory device including steps of providing a semiconductor substrate having formed thereon a gate stack comprising a charge trapping dielectric charge storage layer and a control gate electrode overlying the charge trapping dielectric charge storage layer; forming an oxide layer over at least the gate stack; and depositing a spacer layer over the gate stack, wherein the depositing step deposits a spacer material having a reduced hydrogen content relative to a hydrogen content of a conventional spacer material.
摘要:
Process for reducing charge leakage in a SONOS flash memory device, including in one embodiment, forming a bottom oxide layer of an ONO structure on the semiconductor substrate to form an oxide/silicon interface having a first oxygen content adjacent the oxide/silicon interface; treating the bottom oxide layer to increase the first oxygen content to a second oxygen content adjacent the oxide/silicon interface; and depositing a nitride charge-storage layer on the bottom oxide layer. In another embodiment, process for reducing charge leakage in a SONOS flash memory device, including forming a bottom oxide layer of an ONO structure on a surface of the semiconductor substrate having an oxide/silicon interface with a super-stoichiometric oxygen content adjacent the oxide/silicon interface; and depositing a nitride charge-storage layer on the bottom oxide layer.
摘要:
A method of fabricating a planar architecture charge trapping dielectric memory cell array with rectangular gates comprises fabricating a multi-layer charge trapping dielectric on the surface of a substrate. The layer adjacent to the substrate may be an oxide. A polysilicon layer is deposited over the charge trapping dielectric. A word line mask is applied over the polysilicon layer to mask linear word lines in a first direction and to expose trench regions there between and the trenches are etched to expose the charge trapping dielectric in the trench regions. A bit line mask is applied over the polysilicon layer to mask gates in a second direction perpendicular to the first direction and to expose bit line regions there between and the bit lines are etched to expose the oxide in the bit line regions. The bit lines are implanted and insulating spacers are fabricated on exposed sidewalls. The oxide is removed to expose the substrate between insulating spacers in the bit line regions and a conductor is fabricated thereon to enhance conductivity of each bit line.
摘要:
A Si-rich silicon oxide layer having reduced UV transmission is deposited by PECVD, on an interlayer dielectric, prior to metallization, thereby reducing Vt. Embodiments include depositing a UV opaque Si-rich silicon oxide layer having an R.I. of 1.7 to 2.0.
摘要:
Process of fabricating multi-bit charge trapping dielectric flash memory device, including forming on a semiconductor substrate a bottom oxide layer to define a substrate/oxide interface, in which the bottom oxide layer includes a first oxygen concentration and a first nitrogen concentration; and adding a quantity of nitrogen to the bottom oxide layer, whereby the bottom oxide layer includes a first region adjacent the charge storage layer and a second region adjacent the substrate/oxide interface, the second region having a second oxygen concentration and a second nitrogen concentration, in which the second nitrogen concentration exceeds the first nitrogen concentration, provided that the second nitrogen concentration does not exceed the second oxygen concentration. In one embodiment, the first nitrogen concentration is substantially zero.
摘要:
A semiconductor device includes a semiconductor substrate, an ONO film that is provided on the semiconductor substrate and has a contact hole, and an interlayer insulating film that is provided directly on the ONO film and contains phosphorus. The interlayer insulating film contains 4.5 wt % of phosphorus or more in an interface portion that interfaces with the ONO film. The interlayer insulating film comprises a first portion that contacts the ONO film, and a second portion provided on the first portion. The first portion has a phosphorus concentration more than that of the second portion.
摘要:
The present invention facilitates dual bit memory devices and operation of dual bit memory device by providing systems and methods that employ a relatively thin undoped TEOS liner during fabrication, instead of a relatively thick TEOS layer that is conventionally used. Employment of the relatively thin liner facilitates dual bit memory device operation by mitigating charge loss and contact resistance while providing protection against unwanted dopant diffusion. The present invention includes utilizing a relatively thin undoped TEOS liner that is formed on wordlines and portions of a charge trapping dielectric layer. The relatively thin undoped TEOS liner is formed with a thickness of less than about 400 Angstroms so that contact resistance and charge loss are improved and yet providing suitable protection for operation of the device. Additionally, the present invention includes foregoing with an undoped TEOS liner altogether.
摘要:
A method for performing a bit line implant is disclosed. The method includes forming a group of structures on an oxide-nitride-oxide stack of a semiconductor device. Each structure of the group of structures includes a polysilicon portion and a hard mask portion. A first structure of the group of structures is separated from a second structure of the group of structures by less than 100 nanometers. The method further includes using the first structure and the second structure to isolate a portion of the semiconductor device for the bit line implant.