Abstract:
A method for manufacturing a diamond substrate, including: a first step of preparing patterned diamond on a foundation surface, a second step of growing diamond from the patterned diamond prepared in the first step to form the diamond in a pattern gap of the patterned diamond prepared in the first step, a third step of removing the patterned diamond prepared in the first step to form a patterned diamond composed of the diamond formed in the second step, and a fourth step of growing diamond from the patterned diamond formed in the third step to form the diamond in a pattern gap of the patterned diamond formed in the third step. There can be provided a method for manufacturing a diamond substrate which can sufficiently suppress dislocation defects, a high-quality diamond substrate, and a freestanding diamond substrate.
Abstract:
The present invention provides a method for manufacturing a diamond substrate, including: a first step of preparing patterned diamond on a foundation surface, a second step of removing a foreign substance adhered on a wall of the patterned diamond prepared in the first step, and a third step of growing diamond from the patterned diamond prepared in the first step to form the diamond in a pattern gap of the patterned diamond prepared in the first step. There can be provided a method for manufacturing a diamond substrate with few dislocation defects, in which generation of abnormal growth particles are suppressed.
Abstract:
A diamond crystal according to the present invention has an NV region containing a complex (NV center) of nitrogen substituted with a carbon atom and a vacancy located adjacent to the nitrogen, on a surface or in the vicinity of the surface, wherein the NV region has a donor concentration equal to or higher than the concentration of the NV centers, or a crystal of the NV region is a {111} face or a face having an off-angle that is ±10 degrees or less against the {111} face, and a principal axis of the NV center is a axis that is perpendicular to the {111} face. Such a diamond crystal enables almost 100% of the NV center to be a state (NV−) of having a negative electric charge, and spin states of the NV− centers to be aligned in one direction.
Abstract:
It is an object to provide a method for producing a diamond substrate effective for reducing various defects including dislocation defects and a foundation substrate used for the same. This object is achieved by a foundation substrate for forming a diamond film by a chemical vapor deposition method, wherein an off angle is provided to the surface of the foundation substrate with respect to a predetermined crystal plane orientation.
Abstract:
The present invention provides a method for manufacturing a diamond substrate, including: a first step of preparing patterned diamond on a foundation surface, a second step of growing diamond from the patterned diamond prepared in the first step to form the diamond in a pattern gap of the patterned diamond prepared in the first step, a third step of removing the patterned diamond prepared in the first step to form a patterned diamond composed of the diamond formed in the second step, and a fourth step of growing diamond from the patterned diamond formed in the third step to form the diamond in a pattern gap of the patterned diamond formed in the third step. There can be provided a method for manufacturing a diamond substrate which can sufficiently suppress dislocation defects, a high-quality diamond substrate, and a freestanding diamond substrate.
Abstract:
A white light-emitting device of the present invention includes a substrate (101); a diamond semiconductor layer (105) provided on the substrate (101), in which one or a plurality of p-type α layers (102), a p-type or n-type γ layer (103), and one or a plurality of n-type β layers (104) are laminated in this order from the substrate (101); a first electrode (106) provided on the α layer (102) which injects an electric current; a second electrode (107) provided on the β layer (104) which injects an electric current; and a fluorescent member (108) which coats a light emission extraction region of the surface of the diamond semiconductor layer.
Abstract:
A method for manufacturing a single crystal diamond in which vapor phase synthetic single crystal diamond is additionally deposited on a single crystal diamond seed substrate obtained by vapor phase synthesis, includes a step of measuring flatness of the seed substrate, a step of determining whether or not to flatten the seed substrate based on the measurement result of the flatness, and any one of the following two steps of a step of additionally depositing the vapor phase synthetic single crystal diamond after flattening the seed substrate for which the flattening is necessary based on the determination and a step of additionally depositing the vapor phase synthetic single crystal diamond without flattening the seed substrate for which the flattening is not necessary based on the determination.