摘要:
Provided is a method of manufacturing an optical semiconductor device, the method including: providing a resin layer on a light-emitting substrate to cover a principle surface of the light-emitting substrate, the light-emitting substrate including a pair of electrodes in each section of the principle surface, the resin layer including multiple holes each exposing two of the electrodes located adjacent to each other but in the different sections; providing post electrodes respectively on all the paired electrodes formed in all the sections by filling a conductive material in the holes of the resin layer on the principal surface; and forming multiple optical semiconductor devices by cutting the light-emitting substrate into sections, the light-emitting substrate provided with the post electrodes respectively on all the paired electrodes formed in all the sections.
摘要:
An optical semiconductor device includes a light emitting element having a first surface and a second surface, the first surface having a first electrode provided thereon, the second surface being located on the opposite side from the first surface and having a second electrode provided thereon; a first conductive member connected to the first surface; a second conductive member connected to the second surface; a first external electrode connected to the first conductive member; a second external electrode connected to the second conductive member; and an enclosure sealing the light emitting element, the first conductive member, and the second conductive member between the first external electrode and the second external electrode, and being configured to transmit light emitted from the light emitting element.
摘要:
An optical semiconductor device includes a light emitting element having a first surface and a second surface, the first surface having a first electrode provided thereon, the second surface being located on the opposite side from the first surface and having a second electrode provided thereon; a first conductive member connected to the first surface; a second conductive member connected to the second surface; a first external electrode connected to the first conductive member; a second external electrode connected to the second conductive member; and an enclosure sealing the light emitting element, the first conductive member, and the second conductive member between the first external electrode and the second external electrode, and being configured to transmit light emitted from the light emitting element.
摘要:
An optical semiconductor device includes a light emitting element having a first surface and a second surface, the first surface having a first electrode provided thereon, the second surface being located on the opposite side from the first surface and having a second electrode provided thereon; a first conductive member connected to the first surface; a second conductive member connected to the second surface; a first external electrode connected to the first conductive member; a second external electrode connected to the second conductive member; and an enclosure sealing the light emitting element, the first conductive member, and the second conductive member between the first external electrode and the second external electrode, and being configured to transmit light emitted from the light emitting element.
摘要:
An optical semiconductor device includes a light emitting element having a first surface and a second surface, the first surface having a first electrode provided thereon, the second surface being located on the opposite side from the first surface and having a second electrode provided thereon; a first conductive member connected to the first surface; a second conductive member connected to the second surface; a first external electrode connected to the first conductive member; a second external electrode connected to the second conductive member; and an enclosure sealing the light emitting element, the first conductive member, and the second conductive member between the first external electrode and the second external electrode, and being configured to transmit light emitted from the light emitting element.
摘要:
A lead-free solder comprises tin and zinc at a weight ratio between tin and zinc ranging from about 88:12 to about 80:20 on the basis of total weight of the lead-free solder.
摘要:
The invention aims to provide a thermosetting flux suitable for solder bonding of a semiconductor element and an electronic part and making solder bonding with a high bonding strength and a high heat resistant strength at a high temperature possible and a paste containing the flux and a non-lead type solder paste and with respect to the thermosetting flux, an epoxy resin, a hardening agent, and at least one of rosin derivatives having functional groups reactive on the epoxy resin and selected from maleic acid-modified rosin, a fumaric acid-modified rosin, and acrylic acid-modified rosin are used. The flux can be used in form of a solder paste while being mixed and kneaded with the non-lead type solder alloy powder.
摘要:
Disclosed is a method of joining metallic members together. The metallic members are coated with an undercoat composed of an alloy of tin and zinc and contacted with each other through a mixture containing a solder comprising tin and zinc and a flux, while heating the metallic members to melt the solder. Then the molten solder is solidified to join the metallic members. Here, the ratio of zinc in the undercoat is represented by x (% by weight), the ratio of zinc in the solder is represented by y (% by weight), and the ratio, x, and the ratio, y, are values within an area enclosed by the line A or B in FIG. 1, which satisfies the formulas: 1≦x≦20, 3≦y≦13 and 3≦(x+y)/2≦13, or formulas: 0.1≦x≦25, 2≦y≦15 and 2≦(x+y)/2≦15.
摘要翻译:公开了将金属构件连接在一起的方法。 金属构件涂覆有由锡和锌的合金构成的底涂层,并通过包含锡和锌的焊料和助熔剂的混合物彼此接触,同时加热金属构件以熔化焊料。 然后将熔融的焊料固化,以将金属构件接合。 这里,底涂层中的锌的比例由x(重量%)表示,焊料中的锌的比例由y(重量%)表示,x的比例和y的比例为y 在由图1中的线A或B包围的区域内。 1,其满足以下公式:1 <= x <= 20,3 <= y <= 13和3 <=(x + y)/ 2 <= 13或式:0.1 <= x <= 25,2 = y <= 15和2 <=(x + y)/ 2 <= 15。
摘要:
According to one embodiment, a lighting device includes a body section, a light source, a globe, and a heat transfer section. The light source is provided on one end portion of the body section. The light source includes a light emitting element. The globe is provided so as to cover the light source. The heat transfer section in thermal contacts with at least one of an inner surface of the globe and a heat dissipation surface on the end portion side of the body section.
摘要:
A soldered material according to an aspect of the present invention comprises a first metallic material to be soldered, a second metallic material to be soldered which is composed of at least one element selected from the group consisting of nickel, palladium, platinum and aluminum, and a soldering layer soldering the first metallic material and the second metallic material, and in a cross-sectional microstructure of the soldering layer a solid solution phase comprising the element constituting the second metallic material and tin is present.