Abstract:
A method can be used for fixing a matrix-free electrophoretically deposited layer on a semiconductor chip. A semiconductor wafer has a carrier substrate-and at least one semiconductor chip. The at least one semiconductor chip has an active zone for generating electromagnetic radiation. At least one contact area is formed on a surface of the at least one semiconductor chip facing away from the carrier substrate. A material is electrophoretically deposited on the surface of the at least one semiconductor chip facing away from the carrier substrate in order to form the electrophoretically deposited layer. Deposition of the material on the at least one contact area is prevented. An inorganic matrix material is applied to at least one section of a surface of the semiconductor wafer facing away from the carrier substrate in order to fix the material on the at least one semiconductor chip.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes at least one metallic surface, a contacted optoelectronic semiconductor chip configured to emit radiation and a protective layer arranged on the at least one metallic surface, wherein the protective layer comprises a protective material of at least one N-heterocyclic carbene, and wherein a covalent bond is formed between the protective material and the at least one metallic surface.
Abstract:
A method can be used for fixing a matrix-free electrophoretically deposited layer on a semiconductor chip. A semiconductor wafer has a carrier substrate and at least one semiconductor chip. The at least one semiconductor chip has an active zone for generating electromagnetic radiation. At least one contact area is formed on a surface of the at least one semiconductor chip facing away from the carrier substrate. A material is electrophoretically deposited on the surface of the at least one semiconductor chip facing away from the carrier substrate in order to form the electrophoretically deposited layer. Deposition of the material on the at least one contact area is prevented. An inorganic matrix material is applied to at least one section of a surface of the semiconductor wafer facing away from the carrier substrate in order to fix the material on the at least one semiconductor chip.
Abstract:
The invention relates to an optoelectronic device (1) comprising at least one outer surface (2) containing silicone (20), chemical compounds, comprising an anchor group (3) and a head group (4), being bonded to the silicone via the anchor group, and the adhesion of the regions of the silicone (2) present on the outer surface being reduced owing to the head groups of the chemical compounds. A method for producing an optoelectronic device is also disclosed.
Abstract:
A suspension for protecting a semiconductor material, comprising a carrier medium, trimethylolpropane as a plasticizer, benzotriazole derivate as an absorber dye, and inorganic particles selected from the group consisting of aluminum nitride, silicon nitride and boron nitride, wherein the thermal conductivity of the suspension is about 1 W/mk to about 2 W/mk.
Abstract:
In an embodiment a method includes arranging a plurality of semiconductor chips on a carrier, arranging an auxiliary carrier on sides of the semiconductor chips facing away from the carrier, removing the carrier, separating the auxiliary carrier between the semiconductor chips to form auxiliary carrier-chip units, each of the auxiliary carrier-chip units has at least one semiconductor chip and an auxiliary carrier part adjoining the semiconductor chip, arranging each of the auxiliary carrier-chip units on a connecting carrier and removing the auxiliary carrier parts from each auxiliary carrier-chip unit.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes at least one metallic surface, a contacted optoelectronic semiconductor chip configured to emit radiation and a protective layer arranged on the at least one metallic surface, wherein the protective layer comprises a protective material of at least one N-heterocyclic carbene, and wherein a covalent bond is formed between the protective material and the at least one metallic surface.