摘要:
A semiconductor device and method of manufacturing a semiconductor device. One embodiment provides an electrically conductive carrier. A semiconductor chip is placed over the carrier. An electrically insulating layer is applied over the carrier and the semiconductor chip. The electrically insulating layer has a first face facing the carrier and a second face opposite to the first face. A first through-hole is in the electrically insulating layer. Solder material is deposited in the first through-hole and on the second face of the electrically insulating layer.
摘要:
A semiconductor device and method of manufacturing a semiconductor device. One embodiment provides an electrically conductive carrier. A semiconductor chip is placed over the carrier. An electrically insulating layer is applied over the carrier and the semiconductor chip. The electrically insulating layer has a first face facing the carrier and a second face opposite to the first face. A first through-hole is in the electrically insulating layer. Solder material is deposited in the first through-hole and on the second face of the electrically insulating layer.
摘要:
An electronic device and method is disclosed. In one embodiment, a method includes providing an electrically insulating substrate. A first electrically conductive layer is applied over the electrically insulating substrate. A first semiconductor chip is placed over the first electrically conductive layer. The first semiconductor chip comprises a first electrode on a first main surface and a second electrode on a second main surface. An electrically insulating layer is applied over the first electrically conductive layer. A second electrically conductive layer is applied over the electrically insulating layer. A through connection is provided in the electrically insulating layer to couple the first electrically conductive layer to the second electrically conductive layer.
摘要:
An electronic device and method is disclosed. In one embodiment, a method includes providing an electrically insulating substrate. A first electrically conductive layer is applied over the electrically insulating substrate. A first semiconductor chip is placed over the first electrically conductive layer. An electrically insulating layer is applied over the first electrically conductive layer. A second electrically conductive layer is applied over the electrically insulating layer.
摘要:
An electronic device and method is disclosed. In one embodiment, a method includes providing an electrically insulating substrate. A first electrically conductive layer is applied over the electrically insulating substrate. A first semiconductor chip is placed over the first electrically conductive layer. An electrically insulating layer is applied over the first electrically conductive layer. A second electrically conductive layer is applied over the electrically insulating layer. A through connection is formed in the electrically insulating layer to couple the second electrically conductive layer to the first electrically conductive layer.
摘要:
An electronic device and method is disclosed. In one embodiment, a method includes providing an electrically insulating substrate. A first electrically conductive layer is applied over the electrically insulating substrate. A first semiconductor chip is placed over the first electrically conductive layer. An electrically insulating layer is applied over the first electrically conductive layer. A second electrically conductive layer is applied over the electrically insulating layer.
摘要:
One aspect is monolithic semiconductor switches and method for manufacturing. One embodiment provides a semiconductor die with a first n-type channel FET and a second n-type channel FET. A source of the first n-type channel FET and a drain of the second n-type channel FET are electrically coupled to at least one contact area at a first side of the semiconductor die, respectively. A drain of the first n-type channel FET, a gate of the first n-type channel FET, a source of the second n-type channel FET and the gate of the second n-type channel FET are electrically coupled to contact areas at a second side of the semiconductor die opposite to the first side, respectively. The contact areas of the drain of the first n-type channel FET, of the gate of the first n-type channel FET, of the source of the second n-type channel FET and of the gate of the second n-type channel FET are electrically separated from each other, respectively.
摘要:
In one embodiment, a field effect transistor has a semiconductor body, a drift region of a first conductivity type and a gate electrode. At least one trench extends into the drift region. A field plate is arranged at least in a portion of the at least one trench. A dielectric material at least partially surrounds both the gate electrode and the field plate. The field plate includes a first semiconducting material.
摘要:
A semiconductor device includes a source metallization, a source region of a first conductivity type in contact with the source metallization, a body region of a second conductivity type which is adjacent to the source region. The semiconductor device further includes a first field-effect structure including a first insulated gate electrode and a second field-effect structure including a second insulated gate electrode which is electrically connected to the source metallization. The capacitance per unit area between the second insulated gate electrode and the body region is larger than the capacitance per unit area between the first insulated gate electrode and the body region.
摘要:
A semiconductor device is described. In one embodiment, the device includes a Group-III nitride channel layer and a Group-III nitride barrier layer on the Group-III nitride channel layer, wherein the Group-III nitride barrier layer includes a first portion and a second portion, the first portion having a thickness less than the second portion. A p-doped Group-III nitride gate layer section is arranged at least on the first portion of the Group-III nitride barrier layer and a gate contact formed on the p-doped Group-III nitride gate layer.