Abstract:
A first packaging material, a second packaging material, an electrode body having a positive electrode, a negative electrode, and a separator are provided. A packaging member is formed having an electrode body chamber. A first inner conducting portion allows conduction to a first metal foil and a second inner conducting portion allows conduction to a second metal foil. In the electrode body chamber, electrode body is conducted to a first inner conducting portion in the positive electrode and the electrode body is conducted to a second inner conducting portion in the negative electrode. At least one of the pair of the first metal foil and the positive electrode current collector of the positive electrode and the pair of the second metal foil and the negative electrode current collector of the negative electrode is made of the same metal.
Abstract:
A power storage device includes a positive electrode part including a first metallic foil layer and a positive electrode active material layer partially laminated on one surface of the first metallic foil layer, a negative electrode part including a second metallic foil layer and a negative electrode active material layer partially laminated on one surface of the second metallic foil layer, and a separator arranged between the positive electrode part and the negative electrode part. The positive electrode active material layer is arranged between the first metallic foil layer and the separator, and the negative electrode active material layer is arranged between the second metallic foil layer and the separator. The peripheral regions of the one surfaces of the first and second metallic foil layers in which the positive and negative electrode active material layers are not formed are joined via a peripheral sealing layer containing a thermoplastic resin.
Abstract:
A laminate material with a metal exposed portion is efficiently produced. A peeling step is performed in which a laser beam L is irradiated on a resin layer 17, 18 of a laminate raw material 10 in which a resin layer 17, 18 is laminated on at least one surface of a metal foil 11 to peel the resin layer 17, 18 and the metal foil 11 to thereby form a peeled portion 21, 22. Thereafter, the resin layers 17 and 18 corresponding to the peeled portions 21 and 22 are cut off to expose the metal foil 11.
Abstract:
An armouring material for use in an air secondary battery, including: an armouring sheet (2) constituted by laminating an outer layer (21) including heat-resistant resin film, a metal foil layer (22), and an inner layer (23) including a thermoplastic resin film, being equipped with an opening part (12) for taking oxygen in, perforating through the outer layer, the metal foil layer and the inner layer, and an oxygen-permeable membrane (3) being joined to the inner layer side in an opening part periphery (12a) and covering the opening part. The oxygen-permeable membrane is constituted from a porous fluororesin, a joining surface of outer periphery (3a) of the oxygen-permeable membrane is equipped with a primer layer (3c), and an adhesive layer (5) is provided at least in a space between the primer layer and the inner layer of the armouring sheet, to adhere the oxygen-permeable membrane to the armouring sheet.
Abstract:
Provided is an oxygen permeable membrane for use in an air secondary battery, which excels in oxygen permeability, barrier performance to water, being capable of preventing electrolyte from leaking out. Such an oxygen permeable membrane includes a thermoplastic resin membrane and inorganic particles having pores having pore diameter of 10 Å or less contained in the thermoplastic resin membrane, in which the thermoplastic resin membrane has one surface on which hydrophobic treatment is effected.
Abstract:
A lithium-ion rechargeable battery (1) provided with: a battery unit (100) including a metal substrate (10) and a battery part (20) configured by laminating thin films on the substrate (10); and a shell (200) provided on the surface of the substrate (10), on which the battery part (20) is formed, to seal the substrate (10) and the battery unit (100). The shell (200) includes a laminated film (30) formed by laminating a metal layer (33) and various types of resin layers. Consequently, the thickness of the thin-film type lithium-ion rechargeable battery including a solid electrolyte is reduced.
Abstract:
Provided is a laminate material capable of easily forming a metal exposed portion. The laminate material 1 is a laminate material formed by bonding and laminating a resin layer 17, 18 on at least one surface of a metal foil 11. A recess 27, 28 in which a foil thickness of the metal foil 11 is reduced is formed on a part of a bonding surface of the metal foil. A peeled portion 21, 22 where the resin layer 17, 18 corresponding to the recess 27, 28 has been peeled from the metal foil 11 is formed.
Abstract:
A power storage device includes a positive electrode part including a first metallic foil layer and a positive electrode active material layer partially laminated on one surface of the first metallic foil layer, a negative electrode part including a second metallic foil layer and a negative electrode active material layer partially laminated on one surface of the second metallic foil layer, and a separator arranged between the positive electrode part and the negative electrode part. The positive electrode active material layer is arranged between the first metallic foil layer and the separator, and the negative electrode active material layer is arranged between the second metallic foil layer and the separator. The peripheral regions of the one surfaces of the first and second metallic foil layers in which the positive and negative electrode active material layers are not formed are joined via a peripheral sealing layer containing a thermoplastic resin.
Abstract:
An outer casing material for a battery 4 is provided, wherein an outer layer 11, a metal foil layer 10 and an inner layer 8 are laminated via an adhesive layer 5; the inner layer 8 comprises a sealant layer 8b and a base material layer 8a; the sealant layer 8b is made from a propylene-ethylene random copolymer wherein a melt flow rate at 230° C. thereof is in a range of 3 to 30 g/10 minutes; the base material layer 8a is made of a resin composition wherein a melt flow rate at 230° C. thereof is in a range of 0.1 to 15 g/10 minutes, xylene-soluble component Xs thereof satisfies the predetermined conditions, and the resin composition comprises 50 to 80% by mass of a propylene component (A) and 50 to 20% by mass of a copolymer component (B) which is an elastomer of a copolymer of propylene and ethylene and/or α-olefin having 4 to 12 carbons and includes 50 to 85% by mass of a polymerization unit originated from propylene.