Abstract:
A semiconductor package and or method of fabricating a semiconductor package may be provided. The semiconductor package may include a package substrate. The semiconductor package may include a first semiconductor die coupled to the package substrate by first interconnectors. The semiconductor package may include a second semiconductor die coupled to the first semiconductor die by second interconnectors. The second semiconductor die may be coupled to the substrate.
Abstract:
A stack package includes a first sub-package and a second sub-package stacked on the first sub-package. The first sub-package includes a first through mold via (TMV) for connection spaced apart from a first semiconductor chip in an X-axis direction, a first TMV for bypass spaced apart from the first semiconductor chip in a Y-axis direction, and a first redistribution line (RDL) pattern connecting the first semiconductor chip to the first TMV for connection. The second sub-package includes a second TMV for connection spaced apart from a second semiconductor chip in the Y-axis direction and another RDL pattern connecting the second semiconductor chip to the second TMV for connection. the second sub-package is stacked on the first sub-package such that the second TMV for connection is connected to the first TMV for bypass.
Abstract:
A semiconductor device includes a via electrode penetrating a substrate and a back-side molding layer covering a back-side surface of the substrate. The back-side molding layer contacts a sidewall of a back-side end portion of the via electrode, which is a portion of the via electrode that protrudes from the back-side surface of the substrate.
Abstract:
A semiconductor package and a method of manufacturing the semiconductor package may be provided. The semiconductor package may include a first semiconductor chip disposed on a first surface of an interconnection layer, a second and a third semiconductor chips disposed on a second surface of the interconnection layer. The semiconductor package may include a thermal transfer plate disposed between the second and third semiconductor chips, contacting the second surface of the interconnection layer, and overlapping with the first semiconductor chip. The thermal transfer plate may be configured to provide a heat radiation path.
Abstract:
A semiconductor device includes a chip body having an uneven surface including at least two regions at different levels from one another, a through electrode penetrating the chip body and having an end which is exposed by the uneven surface of the chip body, a passivation layer disposed on the uneven surface of the chip body, and a bump disposed on the passivation layer and the exposed end of the through electrode and overlapping with the uneven surface of the chip body.