摘要:
An antenna structure can include a printed circuit board module and a mold compound disposed on a side of the printed circuit board module. A planar antenna is defined by a conformal shield layer disposed on a first surface of the mold compound such that the mold compound is disposed between the printed circuit board module and the conformal shield layer. The thickness of the mold compound layer and the shape of the conformal shield layer can be varied to optimize a performance of the antenna.
摘要:
Disclosed are apparatus and methods related to conformal coating of radio-frequency (RF) modules. In some embodiments, a module can include an overmold formed over an RF component mounted on a packaging substrate. The overmold can also cover a surface-mount device (SMD) such as an RF filter implemented as a chip size surface acoustic wave (SAW) device (CSSD). The module can further include a conductive layer formed over the overmold and configured to provide RF shielding functionality for the module. The conductive layer can be electrically connected to a ground plane of the packaging substrate through the SMD. An opening can be formed in the overmold over the SMD; and the conductive layer can conform to the opening to electrically connect the conductive layer with an upper surface of the SMD and thereby facilitate the grounding connection.
摘要:
Signal isolation for module with ball grid array. In some embodiments, a packaged module can include a packaging substrate having an underside, and an arrangement of conductive features implemented on the underside of the packaging substrate to allow the packaged module to be capable of being mounted on a circuit board. The arrangement of conductive features can include a signal feature implemented at a first region and configured for passing of a signal, and one or more shielding features placed at a selected location relative to the signal feature to provide an enhanced isolation between the signal feature and a second region of the underside of the packaging substrate.
摘要:
A dual-sided packaged radio-frequency (RF) module comprises a packaging substrate having a first surface with at least one RF circuit component mounted thereon and a second surface opposite to the first surface with at least one circuitry component mounted thereon, at least one contact feature attached to the second surface of the packaging substrate, a vertical extension of the at least one contact feature being larger than a distance between a bottom surface of the at least one circuitry component and the second surface of the packaging substrate, an underside molding encapsulating the at least one circuitry component and the at least one contact feature, a bottom surface of the underside molding being flush with the bottom surface of the at least one circuitry component, and a trench structure formed in the underside molding around the at least one contact feature.
摘要:
A packaging substrate can include a first surface and a second opposing surface, the first surface having a mounting region configured to receive electronic components, and electrical contacts formed on the second opposing surface. A saw street region can surround the mounting region and the electrical contacts, a metal layer and a solder mask layer being formed within the saw street region on the second opposing surface, and the solder mask layer being formed over the metal layer. An electronic module can include a packaging substrate including a first surface and a second opposing surface, the first surface including a mounting region. A plurality of electronic components can be mounted on the mounting region. A ground pad can be formed on the second opposing surface of the packaging substrate, the ground pad including a solder mask layer formed thereon, the solder mask layer having a plurality of openings.
摘要:
Signal isolation for module with ball grid array. In some embodiments, a packaged module can include a packaging substrate having an underside, and an arrangement of conductive features implemented on the underside of the packaging substrate to allow the packaged module to be capable of being mounted on a circuit board. The arrangement of conductive features can include a signal feature implemented at a first region and configured for passing of a signal, and one or more shielding features placed at a selected location relative to the signal feature to provide an enhanced isolation between the signal feature and a second region of the underside of the packaging substrate.
摘要:
According to certain aspects, a method for manufacturing packaged radio-frequency (RF) devices can include: providing a packaging substrate configured to receive a plurality of components, the packaging substrate including a first side and a second side; mounting a first circuit on the first side of the packaging substrate; implementing a first overmold structure on the first side of the packaging substrate, the first overmold structure substantially encapsulating the first component; mounting a second component on the second side of the packaging substrate, the second component being located in an area of the second side where redundant ground pins may be located; implementing a set of through-mold connections on the second side of the packaging substrate, the set of through-mold connections including signal pins and ground pins; forming a second overmold structure over the component and the set of through-mold connections; and removing a portion of the second overmold structure.
摘要:
Described herein methods of manufacturing dual-sided packaged electronic modules that control the distribution of an under-fill material between one or more components and a packaging substrate. The disclosed technologies include under-filling one or more components and deflashing a portion of the under-fill to remove under-fill material prior to attaching solder balls. The deflashing step removes a thin layer of under-fill material that may have coated contact pads for the ball grid array. Because the solder balls are not present during under-fill, there is little capillary action drawing material away from the components being under-filled. This can reduce the frequency of voids under the components being under-filled. Accordingly, the disclosed technologies control under-fill for dual-sided ball grid array packages using under-fill deflash prior to attaching solder balls of the ball grid array.
摘要:
A method for manufacturing a package with a conformal shield antenna includes forming a mold compound layer, attaching the mold compound layer to a printed circuit board, applying a conformal shield layer on a first surface of the mold compound layer, the mold compound layer disposed between the conformal shield layer and the printed circuit board module, and shaping the conformal shield layer to define a planar antenna structure. Optionally, the method includes forming a cavity in the mold compound layer, applying a cover layer over the cavity to enclose the cavity and hardening the cover layer.
摘要:
An antenna structure can include a printed circuit board module and a mold compound disposed on a side of the printed circuit board module. A planar antenna is defined by a conformal shield layer disposed on a first surface of the mold compound such that the mold compound is disposed between the printed circuit board module and the conformal shield layer. The thickness of the mold compound layer and the shape of the conformal shield layer can be varied to optimize a performance of the antenna.