Abstract:
A semiconductor apparatus may include a plurality of semiconductor unit devices. Each of the semiconductor unit devices may be arranged between a first insulating layer and a second insulating layer that are apart from each other in a direction normal to a substrate. Each of the semiconductor unit devices may include a selection device layer and a phase change material layer that extend side by side in a direction parallel to the substrate. The phase change material layer may have a superlattice-like structure. The phase change material layer may be arranged along a recess portion that is formed by the first insulating layer, the second insulating layer, and the selection device layer.
Abstract:
Provided are a chalcogenide-based material, and a switching element and a memory device that include the same. The chalcogenide-based material includes: a chalcogenide material and a dopant. The chalcogenide material includes Ge, Sb, and Se. The dopant includes at least one metal or metalloid element selected from In, Al, Sr, and Si, an oxide of the metal or metalloid element, or a nitride of the metal or metalloid element.
Abstract:
Provided is a semiconductor apparatus including a plurality of semiconductor unit devices. Each of the semiconductor unit devices may be arranged between a first insulating layer and a second insulating layer that are apart from each other in a direction normal to a substrate. Each of the semiconductor unit devices may include a selection device layer and a phase change material layer that extend side by side in a direction parallel to the substrate. The phase change material layer may have a superlattice-like structure. The phase change material layer may be arranged along a recess portion that is formed by the first insulating layer, the second insulating layer, and the selection device layer.
Abstract:
A method of patterning holes includes placing a substrate on a stage of a laser system, the substrate having a graphene layer on a surface thereof, generating a pulse laser from the laser system, and forming a plurality of hole patterns spaced apart from each other on the graphene layer by irradiating the pulse laser while the graphene layer is in motion.
Abstract:
Example embodiments relate to a nanostructure including a conductive region and a nonconductive region, wherein the conductive region includes at least one first nanowire, and the nonconductive region includes at least one second nanowire that is at least partially sectioned, a method of preparing the nanostructure, and a panel unit including the nanostructure.
Abstract:
Provided are a chalcogen compound having ovonic threshold switching characteristics, and a switching device, a semiconductor device, and/or a semiconductor apparatus which include the chalcogen compound. The chalcogen compound includes five or more elements and may have stable switching characteristics with a low off-current value (leakage current value). The chalcogen compound includes: selenium (Se) and tellurium (Te); a first element comprising at least one of indium (In), aluminum (Al), strontium (Sr), and calcium (Ca); and a second element including germanium (Ge) and/or tin (Sn), and may further include at least one of arsenic (As), antimony (Sb), and bismuth (Bi).
Abstract:
A thin-film structure includes a support layer and a dielectric layer on the support layer. The support layer includes a material having a lattice constant. The dielectric layer includes a compound having a Ruddlesden-Popper phase (An+1BnX3n+1). where A and B each independently include a cation, X is an anion, and n is a natural number. The lattice constant of the material of the support layer may be less than a lattice constant of the compound.
Abstract:
Nonreciprocal optical transmission devices and optical apparatuses including the nonreciprocal optical transmission devices are provided. A nonreciprocal optical transmission device includes an optical input portion, an optical output portion, and an intermediate connecting portion interposed between the optical input portion and the optical output portion, and comprising optical waveguides. A complex refractive index of any one or any combination of the optical waveguides changes between the optical input portion and the optical output portion, and a transmission direction of light through the nonreciprocal optical transmission device is controlled by a change in the complex refractive index.
Abstract:
A meta-optical device and a method of manufacturing the same are provided. The method includes depositing a group III-V compound semiconductor on a substrate, forming an anti-oxidation layer, performing crystallization by using post annealing, removing the anti-oxidation layer, and manufacturing a meta-optical device by using patterning.
Abstract:
A method of evaluating the quality of a thin film layer may include: forming the thin film layer on a substrate; applying a stress to the thin film layer; and evaluating the quality of the thin film layer. A device for evaluating the quality of the thin film layer may include a stress chamber for applying a stress to the thin film layer and a refractive index measuring unit for evaluating the quality of the thin film layer based on a rate of change of a refractive index.