Abstract:
A three dimensional semiconductor memory device includes a vertical channel structure extending in a vertical direction on a substrate; interlayer insulating layers surrounding the vertical channel structure and being stacked in the vertical direction on the substrate, gate electrodes surrounding the vertical channel structure and being disposed between the interlayer insulating layers, corners of the gate electrodes adjacent to the vertical channel structure being rounded, and auxiliary gate insulating patterns disposed between the gate electrodes and the vertical channel structure, wherein a side surface of the auxiliary gate insulating pattern is substantially coplanar with a side surface of the interlayer insulating layer in the vertical direction on the substrate.
Abstract:
A semiconductor device includes word lines vertically stacked on top of each other on a substrate, insulating patterns between the word lines, a vertical pillar connected to the substrate, and residual sacrificial patterns on the substrate at sides of the word lines. The vertical pillar penetrates the word lines and the insulating patterns. Each of the insulating patterns includes a first portion between the word lines and a second portion extending from the first portion and between the residual sacrificial patterns. A first thickness of the first portion is smaller than a second thickness of the second portion.
Abstract:
A three-dimensional semiconductor memory device includes a peripheral circuit structure on a substrate, a horizontal active layer on the peripheral circuit structure, stacks provided on the horizontal active layer to include a plurality of electrodes, a vertical structure vertically penetrating the stacks, a common source region between ones of the stacks and in the horizontal active layer, and pick-up regions in the horizontal active layer. The horizontal active layer includes first, second, and third active semiconductor layers sequentially stacked on the peripheral circuit structure. The first and third active semiconductor layers are doped to have high and low impurity concentrations, respectively, and the second active semiconductor layer includes an impurity diffusion restraining material.
Abstract:
A three-dimensional (3D) semiconductor memory device and a method for fabricating the same, the device including insulating layers stacked on a substrate; horizontal structures between the insulating layers, the horizontal structures including gate electrodes, respectively; vertical structures penetrating the insulating layers and the horizontal structures, the vertical structures including semiconductor pillars, respectively; and epitaxial patterns, each of the epitaxial patterns being between the substrate and each of the vertical structures, wherein a minimum width of the epitaxial pattern is less than a width of a corresponding one of the vertical structures.
Abstract:
A three-dimensional (3D) semiconductor memory device includes an electrode separation pattern, a stack structure, a data storage layer, and a channel structure. The electrode separation pattern is disposed on a substrate. A stack structure is disposed on a sidewall of the electrode separation pattern. The stack structure includes a corrugated sidewall opposite to the sidewall of the electrode separation pattern. The sidewall of the electrode separation pattern is vertical to the substrate. A data storage layer is disposed on the corrugated sidewall. A channel structure is disposed on the charge storage layer.
Abstract:
A three-dimensional (3D) semiconductor memory device and a method for fabricating the same, the device including insulating layers stacked on a substrate; horizontal structures between the insulating layers, the horizontal structures including gate electrodes, respectively; vertical structures penetrating the insulating layers and the horizontal structures, the vertical structures including semiconductor pillars, respectively; and epitaxial patterns, each of the epitaxial patterns being between the substrate and each of the vertical structures, wherein a minimum width of the epitaxial pattern is less than a width of a corresponding one of the vertical structures.
Abstract:
A three-dimensional (3D) semiconductor memory device includes an electrode separation pattern, a stack structure, a data storage layer, and a channel structure. The electrode separation pattern is disposed on a substrate. A stack structure is disposed on a sidewall of the electrode separation pattern. The stack structure includes a corrugated sidewall opposite to the sidewall of the electrode separation pattern. The sidewall of the electrode separation pattern is vertical to the substrate. A data storage layer is disposed on the corrugated sidewall. A channel structure is disposed on the charge storage layer.
Abstract:
A three-dimensional (3D) semiconductor memory device includes an electrode separation pattern, a stack structure, a data storage layer, and a channel structure. The electrode separation pattern is disposed on a substrate. A stack structure is disposed on a sidewall of the electrode separation pattern. The stack structure includes a corrugated sidewall opposite to the sidewall of the electrode separation pattern. The sidewall of the electrode separation pattern is vertical to the substrate. A data storage layer is disposed on the corrugated sidewall. A channel structure is disposed on the charge storage layer.
Abstract:
Provided is a three dimensional semiconductor device. The device may include mold layers vertically and sequentially stacked, a conductive pattern between the stacked mold layers, a plugging pattern vertically penetrating the stacked mold layers, an intermediate pattern between the conductive pattern and the plugging pattern, and protective layer patterns between the mold layers and the plugging pattern, wherein the protective layer patterns are separated by the intermediate pattern.
Abstract:
A three-dimensional (3D) semiconductor memory device and a method for fabricating the same, the device including insulating layers stacked on a substrate; horizontal structures between the insulating layers, the horizontal structures including gate electrodes, respectively; vertical structures penetrating the insulating layers and the horizontal structures, the vertical structures including semiconductor pillars, respectively; and epitaxial patterns, each of the epitaxial patterns being between the substrate and each of the vertical structures, wherein a minimum width of the epitaxial pattern is less than a width of a corresponding one of the vertical structures.