Abstract:
A beamforming method is provided. The beamforming method includes determining different beams for pieces of user equipment based on channel information fed back from the pieces of user equipment, predicting beam qualities of the pieces of user equipment for the beams, determining whether the beam qualities satisfy Quality of Service (QoS) for the pieces of user equipment, generating a wide nulling beam by applying wide nulling to a second beam having a side lobe acting as interference against one first beam, when the beam quality of the first beam does not satisfy the QoS; predicting beam qualities for the beams including the wide nulling beam instead of the second beam, and simultaneously communicating with the user equipment through the beams including the wide nulling beam instead of the second beam, when the beam qualities for the beams including the wide nulling beam instead of the second beam satisfy the QoS.
Abstract:
A stacked package structure is provided. The stacked package structure includes a stacked package including a lower semiconductor package, an upper semiconductor package disposed on the lower semiconductor package and spaced a predetermined distance apart from the lower semiconductor package, an inter-package connecting portion electrically connecting the lower semiconductor package and the upper semiconductor package while supporting a space therebetween, and an insulation layer disposed at least outside the inter-package connecting portion and filling the space between the lower semiconductor package and the upper semiconductor package, and an electromagnetic shielding layer surrounding lateral and top surfaces of the stacked package.
Abstract:
Provided is a beamforming apparatus in a receiver in a mobile communication system. The beamforming apparatus includes a Local Oscillator (LO) signal generator for generating an LO signal; a phase shifter for generating a predetermined number of phase-shifted LO signals with respect to the generated LO signal; a switching network for mapping the phase-shifted LO signals to RF signals received via a plurality of receive paths; and a mixer for mixing the RF signals with the mapped LO signals to down-convert a frequency of the RF signals.
Abstract:
Provided is a method in which a Digital Pre-Distorter (DPD) performs digital pre-distortion on a received In-phase (I) signal, a received Quadrature-phase (Q) signal, a feedback I signal, and a feedback Q signal; a mixer mixes a signal output from the DPD with a frequency signal output from an oscillator; each of n phase shifters phase-shifts a signal output from the mixer according to a preset beamforming pattern; each of n Power Amplifiers (PAs) amplifies a signal output from an associated phase shifter according to a gain, the PAs connected to the associated phase shifter on a one-to-one basis; each of n envelope detectors detects an envelope signal from a signal output from an associated PA, the envelope detector connected to the associated PA on a one-to-one basis; and a control unit determines whether the n PAs operate normally, using the envelope signals output from the n envelope detectors.
Abstract:
A multi-chip package may include a package substrate, an interposer chip, a first semiconductor chip, a thermal dissipation structure and a second semiconductor chip. The interposer chip may be mounted on the package substrate. The first semiconductor chip may be mounted on the interposer chip. The first semiconductor chip may have a size smaller than that of the interposer chip. The thermal dissipation structure may be arranged on the interposer chip to surround the first semiconductor chip. The thermal dissipation structure may transfer heat in the first semiconductor chip to the interposer chip. The second semiconductor chip may be mounted on the first semiconductor chip. Thus, the heat in the first semiconductor chip may be effectively transferred to the interposer chip through the thermal dissipation line.
Abstract:
A semiconductor package having a structure in which a decoupling capacitor is disposed to be adjacent with a semiconductor chip using a vertical chip interconnection (VCI) to improve power integrity. The semiconductor package includes a semiconductor substrate including a first finger pad and a second finger pad, a semiconductor chip mounted on the semiconductor substrate and including a first chip pad and a second chip pad, a bonding tape electrically connecting the first finger pad and the first chip pad, and a bonding wire electrically connecting the second finger pad and the second chip pad. Here, the bonding tape is formed to make contact with a sidewall of the semiconductor chip in a vertical direction of the semiconductor chip.
Abstract:
A semiconductor package includes a substrate including a mounting surface having a plurality of ground pads, a semiconductor chip disposed on the mounting surface, a conductive connection part connected to at least one of the plurality of ground pads and having a greater width at a center than at an end, a molding member exposing a top surface of the conductive connection part while wrapping the mounting surface, the conductive connection part and the semiconductor chip, and a heat slug disposed on the molding member and connected to the top surface of the conductive connection part.