摘要:
The present disclosure provide a method of manufacturing a microelectronic device. The method includes forming a bonding pad on a first substrate; forming wiring pads on the first substrate; forming a protection material layer on the first substrate, on sidewalls and top surfaces of the wiring pads, and on sidewalls of the bonding pad, such that a top surface of the bonding pad is at least partially exposed; bonding the first substrate to a second substrate through the bonding pad; opening the second substrate to expose the wiring pads; and removing the protection material layer.
摘要:
The present disclosure provide a method of manufacturing a microelectronic device. The method includes forming a bonding pad on a first substrate; forming wiring pads on the first substrate; forming a protection material layer on the first substrate, on sidewalls and top surfaces of the wiring pads, and on sidewalls of the bonding pad, such that a top surface of the bonding pad is at least partially exposed; bonding the first substrate to a second substrate through the bonding pad; opening the second substrate to expose the wiring pads; and removing the protection material layer.
摘要:
The present disclosure provides a method including providing a first substrate; and forming a microelectromechanical system (MEMS) device on a first surface of the first substrate. A bond pad is formed on at least one bonding site on the first surface of the first substrate. The bonding site is recessed from the first surface. Thus, a top surface of the bond pad may lie below the plane of the top surface of the substrate. A device with recessed connective element(s) (e.g., bond pad) is also described. In further embodiments, a protective layer is formed on the recessed connective element during dicing of a substrate.
摘要:
The present disclosure provides a method including providing a first substrate; and forming a microelectromechanical system (MEMS) device on a first surface of the first substrate. A bond pad is formed on at least one bonding site on the first surface of the first substrate. The bonding site is recessed from the first surface. Thus, a top surface of the bond pad may lie below the plane of the top surface of the substrate. A device with recessed connective element(s) (e.g., bond pad) is also described. In further embodiments, a protective layer is formed on the recessed connective element during dicing of a substrate.
摘要:
A method for wafer to wafer bonding in semiconductor packaging provides for roughening the bonding surfaces in one embodiment. Also provided is a method for passivating the bonding surfaces with a lower melting point material that becomes forced away from the bonding interface during bonding. Also provided is a method for forming an eutectic at the bonding interface to reduce the impact of any native oxide formation at the bonding interface.
摘要:
A device includes a substrate, a routing conductive line over the substrate, a dielectric layer over the routing conductive line, and an etch stop layer over the dielectric layer. A Micro-Electro-Mechanical System (MEMS) device has a portion over the etch stop layer. A contact plug penetrates through the etch stop layer and the dielectric layer. The contact plug connects the portion of the MEMS device to the routing conductive line. An escort ring is disposed over the etch stop layer and under the MEMS device, wherein the escort ring encircles the contact plug.
摘要:
A device includes a substrate, a routing conductive line over the substrate, a dielectric layer over the routing conductive line, and an etch stop layer over the dielectric layer. A Micro-Electro-Mechanical System (MEMS) device has a portion over the etch stop layer. A contact plug penetrates through the etch stop layer and the dielectric layer. The contact plug connects the portion of the MEMS device to the routing conductive line. An escort ring is disposed over the etch stop layer and under the MEMS device, wherein the escort ring encircles the contact plug.
摘要:
A structure comprises a first semiconductor substrate, a first bonding layer deposited on a bonding side the first semiconductor substrate, a second semiconductor substrate stacked on top of the first semiconductor substrate and a second bonding layer deposited on a bonding side of the second semiconductor substrate, wherein the first bonding layer is of a horizontal length greater than a horizontal length of the second semiconductor substrate, and wherein there is a gap between an edge of the second bonding layer and a corresponding edge of the second semiconductor substrate.
摘要:
A structure comprises a first semiconductor substrate, a first bonding layer deposited on a bonding side the first semiconductor substrate, a second semiconductor substrate stacked on top of the first semiconductor substrate and a second bonding layer deposited on a bonding side of the second semiconductor substrate, wherein the first bonding layer is of a horizontal length greater than a horizontal length of the second semiconductor substrate, and wherein there is a gap between an edge of the second bonding layer and a corresponding edge of the second semiconductor substrate.
摘要:
In some embodiments of the present disclosure, a sensor comprises a substrate, a sensor element and an energy-harvesting device. The sensor element comprises a plate, and the plate is moveable with respect to the substrate. The energy-harvesting device is formed on the plate of the sensor element.