摘要:
To provide a semiconductor substrate including a crystalline semiconductor layer which is suitable for practical use, even if a material different from that of the semiconductor layer is used for a supporting substrate, and a semiconductor device using the semiconductor substrate. The semiconductor substrate includes a bonding layer which forms a bonding plane, a barrier layer formed of an insulating material containing nitrogen, a relief layer which is formed of an insulating material that includes nitrogen at less than 20 at. % and hydrogen at 1 at. % to 20 at. %, and an insulating layer containing a halogen, between a supporting substrate and a single-crystal semiconductor layer. The semiconductor device includes the above-described structure at least partially, and a gate insulating layer formed by a microwave plasma CVD method using SiH4 and N2O as source gases is in contact with the single-crystal semiconductor layer.
摘要:
A method for manufacturing an insulating film, which is used as an insulating film used for a semiconductor integrated circuit, whose reliability can be ensured even though it has small thickness, is provided. In particular, a method for manufacturing a high-quality insulating film over a substrate having an insulating surface, which can be enlarged, at low substrate temperature, is provided. A monosilane gas (SiH4), nitrous oxide (N2O), and a rare gas are introduced into a chamber to generate high-density plasma at a pressure higher than or equal to 10 Pa and lower than or equal to 30 Pa so that an insulating film is formed over a substrate having an insulating surface. After that, the supply of a monosilane gas is stopped, and nitrous oxide (N2O) and a rare gas are introduced without exposure to the air to perform plasma treatment on a surface of the insulating film.
摘要:
It is an object to provide a method for manufacturing a semiconductor device that has a semiconductor element including a film in which mixing impurities is suppressed. It is another object to provide a method for manufacturing a semiconductor device with high yield. In a method for manufacturing a semiconductor device in which an insulating film is formed in contact with a semiconductor layer provided over a substrate having an insulating surface with use of a plasma CVD apparatus, after an inner wall of a reaction chamber of the plasma CVD apparatus is coated with a film that does not include an impurity to the insulating film, a substrate is introduced in the reaction chamber, and the insulating film is deposited over the substrate. As a result, an insulating film in which the amount of impurities is reduced can be formed.
摘要:
An object of one embodiment of the present invention is to provide a technique for manufacturing a dense crystalline semiconductor film (e.g., a microcrystalline semiconductor film) without a cavity between crystal grains. A plasma region is formed between a first electrode and a second electrode by supplying high-frequency power of 60 MHz or less to the first electrode under a condition where a pressure of a reactive gas in a reaction chamber of a plasma CVD apparatus is set to 450 Pa to 13332 Pa, and a distance between the first electrode and the second electrode of the plasma CVD apparatus is set to 1 mm to 20 mm; crystalline deposition precursors are formed in a gas phase including the plasma region; a crystal nucleus of 5 nm to 15 nm is formed by depositing the deposition precursors; and a microcrystalline semiconductor film is formed by growing a crystal from the crystal nucleus.
摘要:
The present invention provides a method for manufacturing a highly reliable display device at a low cost with high yield. According to the present invention, a step due to an opening in a contact is covered with an insulating layer to reduce the step, and is processed into a gentle shape. A wiring or the like is formed to be in contact with the insulating layer and thus the coverage of the wiring or the like is enhanced. In addition, deterioration of a light-emitting element due to contaminants such as water can be prevented by sealing a layer including an organic material that has water permeability in a display device with a sealing material. Since the sealing material is formed in a portion of a driver circuit region in the display device, the frame margin of the display device can be narrowed.
摘要:
The present invention provides a method for manufacturing a highly reliable display device at a low cost with high yield. According to the present invention, a step due to an opening in a contact is covered with an insulating layer to reduce the step, and is processed into a gentle shape. A wiring or the like is formed to be in contact with the insulating layer and thus the coverage of the wiring or the like is enhanced. In addition, deterioration of a light-emitting element due to contaminants such as water can be prevented by sealing a layer including an organic material that has water permeability in a display device with a sealing material. Since the sealing material is formed in a portion of a driver circuit region in the display device, the frame margin of the display device can be narrowed.
摘要:
The present invention is provided in order to remove contamination due to contaminant impurities of the interfaces of each film which forms a TFT, which is the major factor that reduces the reliability of TFTs. By connecting a washing chamber and a film formation chamber, film formation can be carried out without exposing TFTs to the air during the time from washing step to the film formation step and it becomes possible to maintain the cleanliness of the interfaces of each film which form the TFT.
摘要:
A seed crystal including mixed phase grains having high crystallinity with a low grain density is formed under a first condition, and a microcrystalline semiconductor film is formed over the seed crystal under a second condition which allows the mixed phase grains in the seed crystal to grow to fill a space between the mixed phase grains. In the first condition, the flow rate of hydrogen is 50 times or greater and 1000 times or less that of a deposition gas containing silicon or germanium, and the pressure in a process chamber is greater than 1333 Pa and 13332 Pa or less. In the second condition, the flow rate of hydrogen is 100 times or greater and 2000 times or less that of a deposition gas containing silicon or germanium, and the pressure in the process chamber is 1333 Pa or greater and 13332 Pa or less.
摘要:
A microcrystalline semiconductor film is formed over a substrate using a plasma CVD apparatus which includes a reaction chamber in such a manner that a deposition gas and hydrogen are supplied to the reaction chamber in which the substrate is set between a first electrode and a second electrode; and plasma is generated in the reaction chamber by supplying high-frequency power to the first electrode. Note that the plasma density in a region overlapping with an end portion of the substrate in a region where the plasma is generated is set to be higher than that in a region which is positioned more on the inside than the region overlapping with the end portion of the substrate, so that the microcrystalline semiconductor film is formed over a region which is positioned more on the inside than the end portion of the substrate.