Abstract:
An improved method and apparatus for programming advanced nanometer flash memory cells is disclosed. In one embodiment, a programming circuit comprises a switch configured to couple a current source to a capacitor during a first mode and to uncouple the current source from the capacitor during the second mode, wherein during the second mode the capacitor is coupled to the gate of a transistor used to program a memory cell.
Abstract:
A memory device with memory cell pairs each having a single continuous channel region, first and second floating gates over first and second portions of the channel region, an erase gate over a third portion of the channel region between the first and second channel region portions, and first and second control gates over the first and second floating gates. For each of the pairs of memory cells, the first region is electrically connected to the second region of an adjacent pair of memory cells in the same active region, and the second region is electrically connected to the first region of an adjacent pair of the memory cells in the same active region.
Abstract:
During a program, read, or erase operation of one or more non-volatile flash memory cells in an array of non-volatile flash memory cells, a negative voltage can be applied to the word lines and/or coupling gates of the selected or unselected non-volatile flash memory cells. The negative voltage is generated by a negative high voltage level shifter using one of several embodiments disclosed herein.
Abstract:
The disclosed embodiments comprise a flash memory device that can be configured to operate as a read only memory device. In some embodiments, the flash memory device can be configured into a flash memory portion and a read only memory portion.
Abstract:
The present invention relates to a flash memory system wherein one or more circuit blocks utilize fully depleted silicon-on-insulator transistor design to minimize leakage
Abstract:
A circuit and method are disclosed for operating a non-volatile memory device, comprising time sampling a reference current or voltage in a floating holding node to obtain a hold voltage and applying the hold voltage in sensing circuitry.
Abstract:
A non-volatile memory device comprises a semiconductor substrate of a first conductivity type. An array of non-volatile memory cells is located in the semiconductor substrate and arranged in a plurality of rows and columns. Each memory cell comprises a first region on a surface of the semiconductor substrate of a second conductivity type, and a second region on the surface of the semiconductor substrate of the second conductivity type. A channel region is between the first region and the second region. A word line overlies a first portion of the channel region and is insulated therefrom, and adjacent to the first region and having little or no overlap with the first region. A floating gate overlies a second portion of the channel region, is adjacent to the first portion, and is insulated therefrom and is adjacent to the second region. A coupling gate overlies the floating gate. A bit line is connected to the first region. During the operations of program, read, or erase, a negative voltage can be applied to the word lines and/or coupling gates of the selected or unselected memory cells.