摘要:
An engine control system and method maintains an optimum exhaust fuel to air ratio in an internal combustion engine. A secondary air injection (SAI) pressure is measured in an SAI system. The SAI pressure measurement is converted into an SAI flow value. A fuel compensation value is obtained based on the SAI flow value. Fuel delivery is compensated to the engine based on the fuel compensation value. In a second embodiment, the fuel compensation value is obtained based on the SAI pressure measurement. Fuel delivery is compensated to the engine based on the fuel compensation value. In a third embodiment, a primary flow value is calculated at an air intake of the engine. A fuel compensation value is calculated based on the SAI flow and primary flow values. Fuel delivery to the engine is compensated based on the fuel compensation value.
摘要:
Operation of a homogeneous charge compression ignition engine is adapted to fuel variations. A variable valve actuating system is employed to effect conditions conducive to homogeneous charge compression ignition operation. Nominal valve timing is selected and adjustments thereto are made based on deviations in combustion phasing from a desired combustion phasing. Fuel delivery timing and quantity are adjusted once valve timing authority limits are reached to achieve further combustion phasing improvement.
摘要:
A method is disclosed for expanding the mid load range of a four-stroke gasoline direct-injection controlled auto-ignition combustion engine. The engine includes at least one cylinder containing a piston reciprocably connected with a crank and defining a variable volume combustion chamber including an intake valve controlling communication with an air intake and an exhaust valve controlling communication with an exhaust outlet. A system is employed for variably actuating the intake and exhaust valves. The valve actuating system is employable to operate the intake and exhaust valves with an exhaust re-compression or an exhaust re-breathing valve strategy. A reservoir chamber in communication with the combustion chamber is provided for temporary holding of residual burned gas. Residual burned gas in the combustion chamber and the exhaust outlet enters into the reservoir chamber and then loses thermal energy while in the reservoir chamber before being drawn back into the combustion chamber.
摘要:
A method is disclosed for controlling the air-fuel ratio in a four-stroke gasoline direct-injection controlled auto-ignition combustion. The engine is operated with two sequential pairs of expansion and contraction strokes during two revolutions of the engine crank, the two revolutions defining a combustion cycle. A system is employed for variably actuating the intake and exhaust valves and adjusting the flow of air and burned gases entering the combustion chamber. Adjusting the flow affects the resulting air-fuel ratio in the combustion chamber. The valve actuating system is employable to operate the intake and exhaust valves with an exhaust re-compression or an exhaust re-breathing valve strategy. Either valve strategy affects the air-fuel ratio in the cylinder and causes a proportion of burned gases from previous combustion cycles to be retained in the cylinder to provide the necessary conditions for auto-ignition of the air-fuel mixture.
摘要:
A method and apparatus for controlling engine operation to compensate for effects of combustion chamber deposits (CCDs) on combustion in a controlled auto-ignition engine is presented. Control methodologies comprise operation of variable valve actuation, fuel injection, spark timing, and intake air and coolant temperature to dynamically compensate for the effect of CCDs. A sensitivity to core gas temperature and chamber wall thermal conditions is shown, which is correlatable to in-cylinder CCD formation. Intake charge or coolant temperature control can be used to compensate for CCD effects. An engine control scheme relies upon a parametric input that quantifies instantaneous CCD formation in the combustion chamber. The result is further applicable to control pre-ignition in a conventional spark-ignition engine.
摘要:
A method to control combustion in an HCCI engine, to mitigate effects of combustion chamber deposits is detailed. The method comprises applying a specific surface coating to a combustion chamber surface. The surface coating has thermal properties substantially similar to the combustion chamber deposits. The thermal properties preferably include a) thermal conductivity, b) heat capacity, and c) thermal diffusivity. Applying a surface coating results in a reduction of combustion variability due to variation in combustion chamber deposits, and an improvement on combustion stability at low loads due to reduced heat loss. A preferred thermally insulating surface coating includes thermal parameters of a heat capacity in a range of 0.03×106 J/m3-K to 2.0×106 J/m3-K; a thermal conductivity in a range of 0.25 W/m-K to 2.5 W/m-K; and, a thermal diffusivity in a range of 1×10−7 m2/s to 8×10−6 m2/s.
摘要:
A direct injection controlled auto-ignition engine is operated at steady state, within a homogeneous charge compression-ignition (HCCI) load range and with fuel-air-diluent mixtures at predetermined conditions, for each speed and load, of engine control inputs, including at least fueling mass flow rate, injection timing (FI), spark timing (SI) and exhaust recompression obtained by negative valve overlap (NVO). During load change rates below a predetermined threshold, SI, FI and NVO change rates are synchronized to current changes in the fueling mass flow rate. For fast load increases above the threshold, the cylinder charge is temporarily enriched by increasing the percentage of residual gas or reducing the percentage of fresh air mass in the charge sufficiently to maintain auto-ignition temperature during the load change. This may be done by delaying NVO action for a predetermined speed-dependent number of engine cycles. At very low loads, stable fuel rate reduction may require an alternate method involving deceleration fuel cut-off followed by a step change during refire.
摘要:
A method is provided for control of a direct-injection engine operated with controlled auto-ignition (HCCI) during load transient operations between modes of lean combustion low load (HCCI/Lean) and stiochiometric combustion medium load (HCCI/Stoich.). The method includes 1) operating the engine at steady state, within a homogeneous charge compression-ignition (HCCI) load range, with fuel-air-exhaust gas mixtures at predetermined conditions, for each speed and load, and controlling the engine during changes of operating mode between one to another of the HCCI/Stoich. medium load mode and the HCCI/Lean lower load mode by synchronizing change rates of predetermined controlled inputs to the current engine fueling change rate.
摘要:
Part load operating point for a controlled auto-ignition four-stroke internal combustion engine is reduced without compromising combustion stability through load dependent valve controls and fueling strategies. Optimal fuel economy is achieved by employing negative valve overlap to trap and re-compress combusted gases below a predetermined engine load and employing exhaust gas re-breathing above the predetermined engine load. Split-injection fuel controls are implemented during low and intermediate part load operation whereas a single-injection fuel control is implemented during high part load operation. Split-injections are characterized by lean fuel/air ratios and single-injections are characterized by either lean or stoichiometric fuel/air ratios. Controlled autoignition is thereby enabled through an extended range of engine loads while maintaining acceptable combustion stability and emissions at optimal fuel economy.
摘要:
Part load operating point for a controlled auto-ignition four-stroke internal combustion engine is reduced without compromising combustion stability through a valve control operative to establish low pressure conditions within the combustion chamber into which fuel and exhaust gases are introduced. Combustion chamber pressures during the intake cycle are controlled lower as engine load decreases. Combusted gases are recirculated into the combustion chamber through a variety of internal and external recirculation mechanizations. A split-injection fuel control is implemented during low part load operation whereas a single-injection fuel control is implemented during intermediate and high part load operation. Split-injections are characterized by lean fuel/air ratios and single-injections are characterized by either lean or stoichiometric fuel/air ratios. Controlled autoignition is thereby enabled through an extended range of engine loads while maintaining acceptable combustion stability and emissions.