Abstract:
A laminated polyester film includes a pigment-containing polyester layer A and wax-containing polyester layers B1 and B2 on both sides of the polyester layer A, wherein the film satisfies formulae (I) and (II), and the coefficient of variation of water contact angle for each layer B1 and layer B2 is not less than 0% and not more than 10%, when the contact angle with water is measured 10 times at arbitrary defined positions within the range of 200 mm×200 mm: Wb1>Wa (I) Wb2>Wa (II) wherein Wb1 and Wb2 represent the wax content per unit area of the layer B1 and layer B2 respectively, and Wa represents the wax content per unit area of the layer A, and wherein the coefficient of variation represents a value obtained by dividing the standard deviation in values measured 10 times by the average value.
Abstract:
Provided is a multilayer film, in which a resin layer obtained using a resin (α) is provided on at least one surface of a polyester film, and which satisfies the conditions (I)-(IV) described below. (I) The resin layer has a thickness of 80-500 nm. (II) The resin layer has a pencil hardness of F or higher. (III) The multilayer film has a haze of 3.0% or less. (IV) The resin (α) is a resin that is obtained by heating a resin composition, which contains a resin (A) that has a hydroxyl group and an acryloyl group and a melamine compound (B) that has a methylol group, at 150° C. or higher. This multilayer film has a transparent resin layer that has a predominantly thin thickness of 500 nm or less, while having high hardness and excellent oligomer precipitation inhibiting properties.
Abstract:
The purpose of the present invention is to provide a laminated polyester film which has excellent translucency and excellent suppression of an iris-like pattern (interference fringe), i.e., excellent visibility, when a hard coat layer is laminated; has excellent initial adhesion to the hard coat layer, adhesiveness at high temperatures and high humidity (wet heat-resistant adhesion), and UV-resistant adhesion (adhesion after UV irradiation); and has excellent adhesion when immersed in boiling water (boiling-resistant adhesion) and boiling-resistant translucency. This objective is achieved by a laminated polyester film having a resin layer (X) on at least one surface of a polyester film, wherein the resin layer (X) is formed from a coating composition comprising an acrylic/urethane copolymer resin (a) and a polyester resin (b) having a naphthalene backbone, and the film haze change amount (ΔHz) before and after a boiling treatment test (ΔHz=the film haze after the boiling treatment test−the film haze before the boiling treatment test) is less than 3.0%.
Abstract:
The present invention provides a laminated film comprising a polyester film having a resin layer on at least one side thereof, wherein said resin layer contains at least metal oxide particles (A) having a number average particle diameter of 3 nm or more and 50 nm or less, and an acrylic resin (B), and a component (C1) derived from an oxazoline-based compound and/or a component (C2) derived from a melamine-based compound, and wherein said acrylic resin (B) contains a monomer unit (b1), a monomer unit (b2) and a monomer unit (b3).The present invention provides a laminated film which is excellent in transparency, suppression of interference pattern upon lamination of a high refractive index hard coat layer, adhesive property to a high refractive index hard coat layer, and adhesion under high temperature and high humidity conditions (adhesion under high temperature and high humidity conditions), at a low cost.
Abstract:
An electrically conductive film has an electrically conductive layer on at least one side, which is a thermoplastic resin film in which the electrically conductive layer contains a carbon nanotube (A), a carbon nanotube dispersant (B) and a binder resin (C), the total of contents of (A), (B) and (C) in the electrically conductive layer is 90% by weight or more relative to the entire electrically conductive layer, and weight rates of (A), (B) and (C) satisfy the following, and a weight ratio of (B) and (A) ((B)/(A)) is 0.5 or more and 15.0 or less: (A) 1.0 to 40.0% by weight, (B) 0.5 to 90.0% by weight, and (C) 4.0 to 98.5% by weight (provided that the total of contents of (A), (B) and (C) is let to be 100% by weight).
Abstract:
An electrically conductive film has an electrically conductive layer on at least one side, which is a thermoplastic resin film in which the electrically conductive layer contains a carbon nanotube (A), a carbon nanotube dispersant (B) and a binder resin (C), the total of contents of (A), (B) and (C) in the electrically conductive layer is 90% by weight or more relative to the entire electrically conductive layer, and weight rates of (A), (B) and (C) satisfy the following, and a weight ratio of (B) and (A) ((B)/(A)) is 0.5 or more and 15.0 or less: (A) 1.0 to 40.0% by weight, (B) 0.5 to 90.0% by weight, and (C) 4.0 to 98.5% by weight (provided that the total of contents of (A), (B) and (C) is let to be 100% by weight).
Abstract:
A laminated body is a laminated body that has in this order a second layer and a first layer with different indices of refraction on at least one surface of a supporting base material, and the first layer contains particles X (particles X being particles having at least an inorganic particle part), with the second layer containing particles Y (particles Y being particles having at least an inorganic particle part) and is characterized by the number average particle size (DX in the following) for the inorganic particle parts for the particles X being 5-25 nm and by Equations 1 and 2 being satisfied: 1.4≦(LX/DX)≦3 1 SLX≦7 2.
Abstract:
Provided is a multilayer film, in which a resin layer obtained using a resin (α) is provided on at least one surface of a polyester film, and which satisfies the conditions (I)-(IV) described below. (I) The resin layer has a thickness of 80-500 nm. (II) The resin layer has a pencil hardness of F or higher. (III) The multilayer film has a haze of 3.0% or less. (IV) The resin (α) is a resin that is obtained by heating a resin composition, which contains a resin (A) that has a hydroxyl group and an acryloyl group and a melamine compound (B) that has a methylol group, at 150° C. or higher. This multilayer film has a transparent resin layer that has a predominantly thin thickness of 500 nm or less, while having high hardness and excellent oligomer precipitation inhibiting properties.
Abstract:
There is provided a reflector having tray shapes excellent in shape retention, specifically, a reflector having tray shapes which change little even when exposed to a moist heat environment for a long period of time and is suitable for a direct type backlight unit, an LED lighting unit, and an illumination for a plant factory.
Abstract:
A laminated polyester film includes a pigment-containing polyester layer A and wax-containing polyester layers B1 and B2 on both sides of the polyester layer A, wherein the film satisfies formulae (I) and (II), and the coefficient of variation of water contact angle for each layer B1 and layer B2 is not less than 0% and not more than 10%, when the contact angle with water is measured 10 times at arbitrary defined positions within the range of 200 mm×200 mm: Wb1>Wa (I) Wb2>Wa (II) wherein Wb1 and Wb2 represent the wax content per unit area of the layer B1 and layer B2 respectively, and Wa represents the wax content per unit area of the layer A, and wherein the coefficient of variation represents a value obtained by dividing the standard deviation in values measured 10 times by the average value.