Abstract:
An IC manufacturing method includes forming first mandrels and second mandrels over a substrate; and forming first spacers on sidewalls of the first mandrels and second spacers on sidewalls of the second mandrels. Each of the first and second spacers has a loop structure with two curvy portions connected by two lines. The method further includes removing the first and second mandrels; and removing the curvy portions from each of the first spacers without removing the curvy portions from the second spacers. The second spacers are used for monitoring variations of the IC fabrication processes.
Abstract:
An IC manufacturing method includes forming first mandrels and second mandrels over a substrate; and forming first spacers on sidewalls of the first mandrels and second spacers on sidewalls of the second mandrels. Each of the first and second spacers has a loop structure with two curvy portions connected by two lines. The method further includes removing the first and second mandrels; and removing the curvy portions from each of the first spacers without removing the curvy portions from the second spacers. The second spacers are used for monitoring variations of the IC fabrication processes.
Abstract:
A method for measuring an implant dosage distribution of a semiconductor sample is provided. The method includes generating a photomodulation effect in a three-dimensional structure of the semiconductor sample and measuring a reflection information of the three-dimensional structure. A geometry information of the three-dimensional structure of the semiconductor sample is obtained. The geometry information of the three-dimensional structure is converted into an estimated reflective data. The reflection information is compared with the estimated reflective data to determine the implant dosage distribution of the three-dimensional structure of the semiconductor sample.
Abstract:
A system and method for plasma enhanced deposition processes. An exemplary semiconductor manufacturing system includes a susceptor configured to hold a semiconductor wafer and a sector disposed above the susceptor. The sector includes a first plate and an overlying second plate, operable to form a plasma there between. The first plate includes a plurality of holes extending through the first plate, which vary in at least one of diameter and density from a first region of the first plate to a second region of the first plate.
Abstract:
An IC manufacturing method includes forming first mandrels and second mandrels over a substrate; and forming first spacers on sidewalls of the first mandrels and second spacers on sidewalls of the second mandrels. Each of the first and second spacers has a loop structure with two curvy portions connected by two lines. The method further includes removing the first and second mandrels; and removing the curvy portions from each of the first spacers without removing the curvy portions from the second spacers. The second spacers are used for monitoring variations of the IC fabrication processes.
Abstract:
This application relates to an apparatus and methods for enhancing the performance of X-ray reflectometry (XRR) when used in characterizing thin films and nanostructures supported on a flat substrate. In particular, this application is targeted for addressing the difficulties encountered when XRR is applied to samples with very limited sampling volume, i.e. a combination of small sampling area and miniscule sample thickness or structure height. Point focused X-ray with long wavelength, greater than that from a copper anode or 0.154 nm, is preferably used with appropriately controlled collimations on both incident and detection arms to enable the XRR measurements of samples with limited volumes.
Abstract:
A system and method for plasma enhanced deposition processes. An exemplary semiconductor manufacturing system includes a susceptor configured to hold a semiconductor wafer and a sector disposed above the susceptor. The sector includes a first plate and an overlying second plate, operable to form a plasma there between. The first plate includes a plurality of holes extending through the first plate, which vary in at least one of diameter and density from a first region of the first plate to a second region of the first plate.
Abstract:
A method for thickness measurement includes forming an implantation region in a semiconductor substrate. A semiconductor layer is formed on the implantation region of the semiconductor substrate. Modulated free carriers are generated in the implantation region of the semiconductor substrate. A probe beam is provided on the semiconductor layer and the implantation region of the semiconductor substrate with the modulated free carriers therein. The probe beam reflected from the semiconductor layer and the implantation region is detected to determine a thickness of the semiconductor layer.
Abstract:
An IC manufacturing method includes forming first mandrels and second mandrels over a substrate; and forming first spacers on sidewalls of the first mandrels and second spacers on sidewalls of the second mandrels. Each of the first and second spacers has a loop structure with two curvy portions connected by two lines. The method further includes removing the first and second mandrels; and removing the curvy portions from each of the first spacers without removing the curvy portions from the second spacers. The second spacers are used for monitoring variations of the IC fabrication processes.
Abstract:
This application relates to an apparatus and methods for enhancing the performance of X-ray reflectometry (XRR) when used in characterizing thin films and nanostructures supported on a flat substrate. In particular, this application is targeted for addressing the difficulties encountered when XRR is applied to samples with very limited sampling volume, i.e. a combination of small sampling area and miniscule sample thickness or structure height. Point focused X-ray with long wavelength, greater than that from a copper anode or 0.154 nm, is preferably used with appropriately controlled collimations on both incident and detection arms to enable the XRR measurements of samples with limited volumes.