摘要:
A power semiconductor package is disclosed with high inductance rating while exhibiting a reduced foot print. It has a bonded stack of power IC die at bottom, a power inductor at top and a circuit substrate, made of leadframe or printed circuit board, in the middle. The power inductor has a inductor core of closed magnetic loop. The circuit substrate has a first number of bottom half-coil forming conductive elements beneath the inductor core. A second number of top half-coil forming conductive elements, made of bond wires, three dimensionally formed interconnection plates or upper leadframe leads, are located atop the inductor core with both ends of each element connected to respective bottom half-coil forming conductive elements to jointly form an inductive coil enclosing the inductor core. A top encapsulant protectively encases the inductor core, the top half-coil forming conductive elements, the bottom half-coil forming conductive elements and the circuit substrate.
摘要:
A method for making back-to-front electrical connections in a wafer level chip scale packaging process is disclosed. A wafer containing a plurality of semiconductor chips is mounted on a package substrate. Each semiconductor chip in the plurality includes one or more electrodes on an exposed back side. Scribe lines between two or more adjacent chips on the wafer are removed to form relatively wide gaps. A conductive material is applied to the back side of the semiconductor chips and in the gaps. The conductive material in the gaps between two or more of the chips is then cut through leaving conductive material on the back side and on side walls of the two or more chips. As a result, the conductive material provides an electrical connection from the electrode on the back side of the chip to the front side of the chip.
摘要:
A method of fabricating a semiconductor device employing electroless plating including wafer backside protection during wet processing is disclosed. The method includes the steps of laminating a wafer back side and a frame with a protective tape, applying a protective coating to a peripheral portion of the wafer and an adjoining exposed area of the protective tape, the protective coating, protective tape, and wafer forming a protected wafer assembly, curing the frame-supported protective coating, cutting the protected wafer assembly from the protective tape surrounding the protective coating, wet processing the protected wafer assembly, laminating the protected wafer assembly with a second tape, dicing the wafer, and picking up the die from the protective tape.
摘要:
A method and apparatus for ultra thin wafer backside processing are disclosed. The apparatus includes an outer ring holding a high temperature grinding and/or dicing tape to form a support structure. An ultra thin wafer or diced wafer is adhered to the tape within the ring for wafer backside processing. The wafer backside processing includes ion implantation, annealing, etching, sputtering and evaporation while the wafer is in the support structure. Alternative uses of the support structure are also disclosed including the fabrication of dies having metalized side walls.
摘要:
A method and apparatus for ultra thin wafer backside processing are disclosed. The apparatus includes an outer ring holding a high temperature grinding and/or dicing tape to form a support structure. An ultra thin wafer or diced wafer is adhered to the tape within the ring for wafer backside processing. The wafer backside processing includes ion implantation, annealing, etching, sputtering and evaporation while the wafer is in the support structure. Alternative uses of the support structure are also disclosed including the fabrication of dies having metalized side walls.
摘要:
A method and apparatus for ultra thin wafer backside processing are disclosed. The apparatus includes an outer ring holding a high temperature grinding and/or dicing tape to form a support structure. An ultra thin wafer or diced wafer is adhered to the tape within the ring for wafer backside processing. The wafer backside processing includes ion implantation, annealing, etching, sputtering and evaporation while the wafer is in the support structure. Alternative uses of the support structure are also disclosed including the fabrication of dies having metalized side walls.
摘要:
A method and apparatus for ultra thin wafer backside processing are disclosed. The apparatus includes an outer ring holding a high temperature grinding and/or dicing tape to form a support structure. An ultra thin wafer or diced wafer is adhered to the tape within the ring for wafer backside processing. The wafer backside processing includes ion implantation, annealing, etching, sputtering and evaporation while the wafer is in the support structure. Alternative uses of the support structure are also disclosed including the fabrication of dies having metalized side walls.
摘要:
Power wafer level chip scale package (CSP) and process of manufacture are enclosed. The power wafer level chip scale package includes all source, gate and drain electrodes located on one side of the device, which is convenient for mounting to a printed circuit board (PCB) with solder paste.
摘要:
Power wafer level chip scale package (CSP) and process of manufacture are enclosed. The power wafer level chip scale package includes all source, gate and drain electrodes located on one side of the device, which is convenient for mounting to a printed circuit board (PCB) with solder paste.
摘要:
A method and apparatus for ultra thin wafer backside processing are disclosed. The apparatus includes an outer ring holding a high temperature grinding and/or dicing tape to form a support structure. An ultra thin wafer or diced wafer is adhered to the tape within the ring for wafer backside processing. The wafer backside processing includes ion implantation, annealing, etching, sputtering and evaporation while the wafer is in the support structure. Alternative uses of the support structure are also disclosed including the fabrication of dies having metalized side walls.